Evaluating Generative AI Initiatives in Human Resources: Multiple Criteria Decision Analysis
DOI:
https://doi.org/10.52812/msbd.111Keywords:
Generative Artificial Intelligence, Human Resource Analytics, Analytical Ordinal Priority Approach, Grey Relational Analysis, Multiple Criteria Decision Analysis, Generative AI, GenAIAbstract
The current study introduces a systematic framework to address the critical challenge of prioritizing Generative Artificial Intelligence (GenAI) initiatives within Human Resources (HR) Management. Confronted with multiple high-potential yet resource-intensive options, HR leaders require an objective method for strategic investment. The study employs a Multi-Criteria Decision-Making (MCDM) methodology, integrating the Analytical Ordinal Priority Approach (AOPA) and the Dynamic Grey Relational Analysis (DGRA). Ten distinct GenAI use cases are identified and evaluated against eleven strategic criteria—spanning impact, feasibility, risk, and organizational momentum—based on the judgments of a diverse panel of experts from HR, Information Technology, Finance, Legal, and Operations. The results yield a validated, consolidated ranking of initiatives. The Employee Sentiment & Trend Analyzer emerges as the highest-priority initiative, followed by the Intelligent HR Helpdesk Chatbot and the Automated Recruitment Coordinator, while the Interactive Leadership Training Simulator is consistently ranked lowest. The study provides HR leaders with a transparent, data-driven framework for phased implementation, advocating for initial investments in initiatives that balance strategic value, strong return on investment, and manageable risk to build organizational confidence and momentum in the adoption of transformative AI technologies.
References
Abendroth, D., Arias, C. P., Bacco, F. M., Bassani, E., Bertoletti, A., Bertolini, L., ... & Vinagre, J. (2025). Generative AI Outlook Report. Publications Office of the European Union. https://dx.doi.org/10.2760/1109679
Abifarin, J. K., Olubiyi, D. O., Dauda, E. T., & Oyedeji, E. O. (2021). Taguchi grey relational optimization of the multi-mechanical characteristics of kaolin reinforced hydroxyapatite: effect of fabrication parameters. International Journal of Grey Systems, 1(2), 20-32. https://doi.org/10.52812/ijgs.30
Adel, A., & Alani, N. (2025). Can generative AI reliably synthesise literature? exploring hallucination issues in ChatGPT. AI & SOCIETY, 40, 6799–6812. https://doi.org/10.1007/s00146-025-02406-7
Aggarwal, A., Sharma, I., Kukreja, V., Verma, T., & Aggarwal, R. (2025). Assessing and ranking the skills required for IT personnel: a hybrid decision-making model using fuzzy AHP-TOPSIS. Global Knowledge, Memory and Communication. https://doi.org/10.1108/GKMC-05-2024-0253
Ahmadzadeh, A., Aboumasoudi, A. S., Shahin, A., & Teimouri, H. (2021). Studying the critical success factors of ERP in the banking sector: a DEMATEL approach. International Journal of Procurement Management, 14(1), 126-145. https://doi.org/10.1504/IJPM.2021.112377
Alla, P. B. (2025). Augmenting RPA with GenAI for Semi-Autonomous Human-in-the-Loop Systems. Digital Engineering, 8, 100071. https://doi.org/10.1016/j.dte.2025.100071
Anderson, E., Parker, G., & Tan, B. (2025). Beyond Productivity: Evaluating the Hidden Costs of Generative AI in Software Development. Available at SSRN. https://dx.doi.org/10.2139/ssrn.5842302
Beheshtinia, M. A., & Omidi, S. (2017). A hybrid MCDM approach for performance evaluation in the banking industry. Kybernetes, 46(8), 1386-1407. https://doi.org/10.1108/K-03-2017-0105
Behrendt, A., De Boer, E., Kasah, T., Koerber, B., Mohr, N., & Richter, G. (2021). Leveraging Industrial IoT and advanced technologies for digital transformation. McKinsey & Company, 1-75.
Belizón, M. J., & Kieran, S. (2022). Human resources analytics: A legitimacy process. Human Resource Management Journal, 32(3), 603-630. https://doi.org/10.1111/1748-8583.12417
Cano-Marin, E. (2024). The transformative potential of Generative Artificial Intelligence (GenAI) in business: a text mining analysis on innovation data sources. ESIC Market, 55(2), e333-e333. https://doi.org/10.7200/esicm.55.333
Chandrasekaran, A. S. (2024). Harnessing the power of generative artificial intelligence (GenAI) in governance risk management and compliance (GRC). International Research Journal of Engineering and Technology, 11(5), 1234-1244. https://www.researchgate.net/publication/382761451
Chodha, V., Dubey, R., Kumar, R., Singh, S., & Kaur, S. (2022). Selection of industrial arc welding robot with TOPSIS and Entropy MCDM techniques. Materials Today: Proceedings, 50(5), 709-715. https://doi.org/10.1016/j.matpr.2021.04.487
Chuma, E. L., Alves, A. M., & de Oliveira, G. G. (2024). Evolution of generative AI for business decision-making: A case of ChatGPT. Management Science and Business Decisions, 4(1), 5-14. https://doi.org/10.52812/msbd.87
Corradi, G., Theirs, C., Martínez‐Martí, M. L., Isern‐Mas, C., & Villar, S. (2025). Who fears Generative Artificial Intelligence? Scale development and predictors of fears towards GenAI. Scandinavian Journal of Psychology. https://doi.org/10.1111/sjop.70037
Costa, I. P. D. A., Basílio, M. P., Maêda, S. M. D. N., Rodrigues, M. V. G., Moreira, M. Â. L., Gomes, C. F. S., & dos Santos, M. (2021). Bibliometric studies on multi-criteria decision analysis (MCDA) applied in personnel selection. In Modern Management based on Big Data II and Machine Learning and Intelligent Systems III (pp. 119-125). IOS Press. https://doi.org/10.3233/FAIA210239
Darbinian, K., Osibo, B. K., Septime, M. M. C., & Meyrem, H. (2023). Investigating the barriers to electric vehicle adoption among older adults using grey relational analysis: a cross-country survey. Management Science and Business Decisions, 3(2), 18-34. https://doi.org/10.52812/msbd.80
De Frutos Pérez, P. (2025). AI Adoption in Research & Innovation: Implementation of AI to reduce administrative workand better utilize existing information. KTH School of Industrial Engineering and Management. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A2002017
Ersoy, Y. (2021). Personnel selection in the software industry by using entropy-based EDAS and CODAS methods. Türkiye Mesleki ve Sosyal Bilimler Dergisi, (6), 36-49. https://doi.org/10.46236/jovosst.960354
Faisal, M. N., Al Subaie, A. A., Sabir, L. B., & Sharif, K. J. (2023). PMBOK, IPMA and fuzzy-AHP based novel framework for leadership competencies development in megaprojects. Benchmarking: An International Journal, 30(9), 2993-3020. https://doi.org/10.1108/BIJ-10-2021-0583
Garcia, R. F., & Kwok, L. (2025). Generative artificial intelligence in human resource management: a critical reflection on impacts, resilience and roles. International Journal of Contemporary Hospitality Management, 37(9), 3136-3158. https://doi.org/10.1108/IJCHM-01-2025-0159
Getto, G., Kelley, S., & Vance, B. (2025). How to Write With GenAI: A Framework for Using Generative AI to Automate Writing Tasks in Technical Communication. Journal of Technical Writing and Communication. https://doi.org/10.1177/00472816251332208
Gowrishankkar, V., Shanmugam, V., Muhammed, A. A., Sanjeevan, B., Veerachamy, R., & Maheswaran, M. (2025). Human Resource Management in the Epoch of Generative AI: Opportunities and Challenges. Advancements in Intelligent Process Automation, 51-78. https://doi.org/10.4018/979-8-3693-5380-6.ch003
Hallerbach, W. G., & Spronk, J. (2002). The relevance of MCDM for financial decisions. Journal of Multi‐Criteria Decision Analysis, 11(4‐5), 187-195. https://doi.org/10.1002/mcda.328
Hosanagar, K., & Krishnan, R. (2024). Who Profits the Most From Generative AI?. MIT Sloan Management Review, 65(3), 24-29.
Ioannidis, J., Harper, J., Quah, M. S., & Hunter, D. (2023, June). Gracenote. ai: legal generative AI for regulatory compliance. In Proceedings of the third international workshop on artificial intelligence and intelligent assistance for legal professionals in the digital Workplace (LegalAIIA 2023). https://ceur-ws.org/Vol-3423/paper3.pdf
Javed, S. A. (2019). A novel research on grey incidence analysis models and its application in project management (Doctoral dissertation). China: Nanjing University of Aeronautics and Astronautics.
Javed, S. A., & Du, J. (2023). What is the Ordinal Priority Approach?. Management Science and Business Decisions, 3(1), 12-26. https://doi.org/10.52812/msbd.72
Javed, S. A., & Mahmoudi, A. (2025). Analytical Ordinal Priority Approach. Management Science and Business Decisions, 5(1), 5-14. https://doi.org/10.52812/msbd.104
Javed, S. A., Gunasekaran, A., & Mahmoudi, A. (2022). DGRA: Multi-sourcing and supplier classification through Dynamic Grey Relational Analysis method. Computers & Industrial Engineering, 173, 108674. https://doi.org/10.1016/j.cie.2022.108674
Jenkins, D., & Khanna, G. (2025). AI‐Enhanced Training, Education, & Development: Exploration and Insights Into Generative AI's Role in Leadership Learning. Journal of Leadership Studies, 18(4), 81-97. https://doi.org/10.1002/jls.70004
Jeon, G. (2025). Rethinking Competitiveness in the Age of AI: A Comparative Index‐Based Approach. Journal of International Development, 37(7), 1525-1542. https://doi.org/10.1002/jid.70018
Jiang, Y., Cai, Z., & Wang, X. (2025). Leverage generative AI for human resource management: Integrated risk analysis approach. The International Journal of Human Resource Management, 36(11), 1929-1959. https://doi.org/10.1080/09585192.2025.2544972
Kanagaraj, U., & Thapliyal, M. K. (2025, November). Revolutionizing Talent Management with Agentic GenAI: An AI Assistant Empowering Data-Driven Performance Decisions. In Abu Dhabi International Petroleum Exhibition and Conference (p. D031S107R003). SPE. https://doi.org/10.2118/229266-MS
Kazancoglu, Y., & Burmaoglu, S. (2013). ERP software selection with MCDM: application of TODIM method. International Journal of Business Information Systems, 13(4), 435-452. https://doi.org/10.1504/IJBIS.2013.055300
Kendrick, T. (2015). Identifying and managing project risk: essential tools for failure-proofing your project (3rd Ed.). American Management Association.
Khan, M. I., Parahyanti, E., & Hussain, S. (2024). The role generative AI in human resource management: enhancing operational efficiency, decision-making, and addressing ethical challenges. Asian Journal of Logistics Management, 3(2), 104-125. https://doi.org/10.14710/ajlm.2024.24671
Khan, N. A., Kumar, A., & Rao, N. (2025). An Insight into Multi-Criteria Decision Methods for the Selection of Robot: A Comprehensive Review. SN Computer Science, 6(6), 612. https://doi.org/10.1007/s42979-025-04143-6
Kirchherr, J., Maor, D., Rupietta, K., & Weerda, K. (2025). Four ways to start using generative AI in HR. McKinsey & Company. https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/the-organization-blog/four-ways-to-start-using-generative-ai-in-hr
Krishnasamy, S. K. L., & Lee, C. S. (2024, September). AI Chatbots in the Office: Unveiling the Social Impacts on Future Workplace Harmony. In 2024 International Conference on ICT for Smart Society (ICISS) (pp. 1-6). IEEE. https://doi.org/10.1109/ICISS62896.2024.10751425
Lee, J. Y., & Lee, Y. (2024). Integrative literature review on people analytics and implications from the perspective of human resource development. Human Resource Development Review, 23(1), 58-87. https://doi.org/10.1177/15344843231217181
Lenka, R., & Chanda, R. (2024, August). Generative AI for Predicting Employee Engagement in HR Analytics: A Bibliometric Analysis. In International Conference on ICT for Sustainable Development (pp. 201-209). Singapore: Springer Nature. https://doi.org/10.1007/978-981-97-8605-3_19
Levenson, A., & Fink, A. (2017). Human capital analytics: too much data and analysis, not enough models and business insights. Journal of Organizational Effectiveness: People and Performance, 4(2), 145-156. https://doi.org/10.1108/JOEPP-03-2017-0029
Liu, Y. T., Liu, T. Y., Qin, T., Ma, Z. M., & Li, H. (2007, May). Supervised rank aggregation. In Proceedings of the 16th international conference on World Wide Web (pp. 481-490). https://doi.org/10.1145/1242572.1242638
Mahmoudi, A., Javed, S. A., & Mardani, A. (2022). Gresilient supplier selection through fuzzy ordinal priority approach: decision-making in post-COVID era. Operations Management Research, 15(1), 208-232. https://doi.org/10.1007/s12063-021-00178-z
Majumdar, P. (2025). Empowering skill development through generative AI bridging gaps for a sustainable future. The Scientific Temper, 16 (spl-1), 104-120. https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.spl-1.14
Majumder, S., & Misra, B. (2025). Analysing Trends and Patterns in Employee Engagement Through AI. Springer. https://doi.org/10.1007/978-981-96-4496-4
Manoharan, T. R., Muralidharan, C., & Deshmukh, S. G. (2011). An integrated fuzzy multi-attribute decision-making model for employees' performance appraisal. The International Journal of Human Resource Management, 22(03), 722-745. https://doi.org/10.1080/09585192.2011.543763
Marinelli, L., Cioli, A., & Gregori, G. L. (2025). Training, Reskilling, Recruiting: The Future of Work in the Age of Generative AI. In The Generative AI Impact: Reframing Innovation in Society 5.0 (pp. 237-256). Emerald Publishing Limited. https://doi.org/10.1108/978-1-83549-105-820251013
Masrek, M. N., Anuar, M. A. W., & Mazlan, N. H. (2025). Harnessing Generative AI in Human Resources: A Strategic Approach to Cost Reduction and Workforce Optimization. International Journal of Research and Innovation in Social Science, IX (I), 2343-2355. https://dx.doi.org/10.47772/IJRISS.2025.9010189
Mayer, A. S., Baygi, R. M., & Buwalda, R. (2025). Generation AI: Job Crafting by Entry-Level Professionals in the Age of Generative AI: A.-S. Mayer et al. Business & Information Systems Engineering, 67(5), 595-613. https://doi.org/10.1007/s12599-025-00959-x
Munier, N., & Hontoria, E. (2021). Uses and Limitations of the AHP Method. Springer. https://doi.org/10.1007/978-3-030-60392-2
Nofal, A. B., Ali, H., Hadi, M., Ahmad, A., Qayyum, A., Johri, A., ... & Qadir, J. (2025). AI-enhanced interview simulation in the metaverse: Transforming professional skills training through VR and generative conversational AI. Computers and Education: Artificial Intelligence, 8, 100347. https://doi.org/10.1016/j.caeai.2024.100347
Ouali, M. (2022). Evaluation of Chinese cloth suppliers using dynamic grey relational analysis. International Journal of Grey Systems, 2(2), 34-46. https://doi.org/10.52812/ijgs.62
Phillips-Wren, G., & Virvou, M. (2025). Issues and trends in generative AI technologies for decision making. Intelligent Decision Technologies, 19(2), 574-584. https://doi.org/10.1177/18724981251320551
Radulescu, C. Z., & Radulescu, M. (2025). Criteria Analysis for the Selection of a Generative Artificial Intelligence Tool for Academic Research Based on an Improved Group DEMATEL Method. Applied Sciences, 15(10), 5416. https://doi.org/10.3390/app15105416
Rani, P. S., Neela, K., & Chandanavalli, P. (2025, April). GenAI Workforce Evaluation System. In 2025 International Conference on Computing and Communication Technologies (ICCCT) (pp. 1-5). IEEE. https://doi.org/10.1109/ICCCT63501.2025.11019305
Rathi, G. D. (2025). Role of Artificial Intelligence (Ai) In Human Resource Management. Vidyabharati International Interdisciplinary Research Journal, 20(1), 180-184. https://www.viirj.org/vol20issue1/30.pdf
Rauscher, K. (2024). Successful Strategies Government Executive Stakeholders Use to Mitigate Higher Project Costs and User Adoption Failure Rates (Doctoral dissertation). Walden University.
Sánchez, V., De los Rios-Berjillos, A., & Lucia-Casademunt, A. M. (2025). Designing Inclusive GenAI Adoption: A Practice-Oriented, Multi-Level HR Matrix to Empower Equity-Seeking Groups in the Workplace. Available at SSRN: https://dx.doi.org/10.2139/ssrn.5800063
Sekli, G. M., & De La Vega, I. (2025). Addressing challenges and constructing a blueprint for effective generative AI integration in business operations. Technology Analysis & Strategic Management, 1-24. https://doi.org/10.1080/09537325.2025.2577709
Singh, A., & Chouhan, T. (2023). Artificial intelligence in HRM: role of emotional–social intelligence and future work skill. In The adoption and effect of artificial intelligence on human resources management, part A (pp. 175-196). Emerald Publishing Limited. https://doi.org/10.1108/978-1-80382-027-920231009
Singh, V. (2023). Exploring the role of large language model (llm)-based chatbots for human resources (Doctoral dissertation). The University of Texas at Austin. https://doi.org/10.26153/tsw/51146
Sterne, J. (2024). Measuring the business value of generative AI. Journal of AI, Robotics & Workplace Automation, 3(1), 28-36. https://doi.org/10.69554/AUIJ4734
Subramanian, S. (2024). Large Language Model-Based Solutions: How to Deliver Value with Cost-Effective Generative AI Applications. John Wiley & Sons.
Tadvi, S., Rangari, S., & Rohe, A. (2020, March). HR based interactive chat bot (powerbot). In 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA) (pp. 1-6). IEEE. https://doi.org/10.1109/ICCSEA49143.2020.9132917
Tan, L. (2024). Designing an AI Career Mentor for Early Career Researchers. CERN IdeaSquare Journal of Experimental Innovation, 8(3), 42-51. https://doi.org/10.23726/cij.2024.1576
Tharayil, S. M., Alghamdi, M. A., Aljohar, F. E., Alhuzami, J. S., & Alzahrani, M. M. (2025, November). GenAI Based Framework for Personalized Training Recommender in Energy Sector. In Abu Dhabi International Petroleum Exhibition and Conference (p. D031S107R002). SPE. https://doi.org/10.2118/229345-MS
Uddagiri, C., & Isunuri, B. V. (2024). Ethical and privacy challenges of generative AI. In Generative AI: Current Trends and Applications (pp. 219-244). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-8460-8_11
van der Merwe, M., & Veldsman, D. (2025). Promise or peril? Sentiments shaping the adoption of Generative Artificial Intelligence in Human Resource Management. EWOP in Practice, 19(1). https://doi.org/10.21825/ewopinpractice.94697
Voskoglou, M. G. (2024). Grey Multiple-Criteria Decision-Making. International Journal of Grey Systems, 4(1), 5-10. https://doi.org/10.52812/ijgs.88
Wach, K., Duong, C. D., Ejdys, J., Kazlauskaitė, R., Korzynski, P., Mazurek, G., ... & Ziemba, E. (2023). The dark side of generative artificial intelligence: A critical analysis of controversies and risks of ChatGPT. Entrepreneurial Business and Economics Review, 11(2), 7-30. https://www.ceeol.com/search/article-detail?id=1205845
Wang, J., & Legner, C. (2025). Uncovering Untapped Organizational Knowledge in Unstructured Data: GenAI and the Reconfiguration of Data Management. ICIS 2025 Proceedings. 6. https://aisel.aisnet.org/icis2025/general_topic/general_topic/6
Yoon, K. P., & Kim, W. K. (2017). The behavioral TOPSIS. Expert Systems with Applications, 89, 266-272. https://doi.org/10.1016/j.eswa.2017.07.045
.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Science Insight

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Creative Commons Non Commercial CC BY-NC: The work is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is properly attributed.



