Evaluation of Low-Carbon Sustainable Technologies in Agriculture Sector through Grey Ordinal Priority Approach
DOI:
https://doi.org/10.52812/ijgs.3Keywords:
Low-carbon and sustainable agricultural technologies, decision making, Grey System Theory, sustainable developmentAbstract
The agriculture sector plays a vital role in the economy, society, and environment, the three dimensions of sustainability. The agriculture sector contributes 12% to 14% of global greenhouse gas (GHG) emissions to the atmosphere, negatively impacting climate change. Using low-carbon and sustainable agricultural technologies can help mitigate climate change and global food security issues. But selecting and prioritizing the best technologies among all alternatives has always been an issue for decision-makers because of various uncertainty related to the agricultural sector. Therefore, the current study intends to identify and prioritize the key low-carbon and sustainable agricultural technologies. The current study makes a pioneering attempt in employing the Grey Ordinal Priority Approach (OPA-G), a modern multi-attribute decision-making technique, for the evaluation of low-carbon and sustainable technologies for the agricultural sector.
References
Abdalla, K., Chivenge, P., Ciais, P., & Chaplot, V. (2016). No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: results from a meta-analysis. Biogeosciences, 13(12), 3619-3633. https://doi.org/10.5194/bg-13-3619-2016
Abid, N., Ikram, M., Wu, J., & Ferasso, M. (2021). Towards environmental sustainability: Exploring the nexus among ISO 14001, governance indicators and green economy in Pakistan. Sustainable Production and Consumption, 27, 653–666. https://doi.org/10.1016/j.spc.2021.01.024
Adimassu, Z., Langan, S., Johnston, R., Mekuria, W., & Amede, T. (2017). Impacts of soil and water conservation practices on crop yield, run-off, soil loss and nutrient loss in Ethiopia: review and synthesis. Environmental Management, 59(1), 87-101. https://doi.org/10.1007/s00267-016-0776-1
Amadu, F. O., Miller, D. C., & McNamara, P. E. (2020). Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: Evidence from southern Malawi. Ecological Economics, 167, 106443. https://doi.org/10.1016/j.ecolecon.2019.106443
Amindoust, A. (2018). A resilient-sustainable based supplier selection model using a hybrid intelligent method. Computers & Industrial Engineering, 126, 122-135. https://doi.org/10.1016/j.cie.2018.09.031
An, D., Xi, B., Ren, J., Ren, X., Zhang, W., Wang, Y., & Dong, L. (2018). Multi-criteria sustainability assessment of urban sludge treatment technologies: Method and case study. Resources, Conservation and Recycling, 128, 546-554. https://doi.org/10.1016/j.resconrec.2016.08.018
Anuga, S. W., Chirinda, N., Nukpezah, D., Ahenkan, A., Andrieu, N., & Gordon, C. (2020). Towards low carbon agriculture: Systematic-narratives of climate-smart agriculture mitigation potential in Africa. Current Research in Environmental Sustainability, 2, 100015. http://dx.doi.org/10.1016/j.crsust.2020.100015
Arcipowska, A. Mangan, E. Lyu, Y. Wate, R. (2019, July 29). 5 Questions About Agricultural Emissions, Answered. World Resources Institute. Retrieved from https://www.wri.org/blog/2019/07/5-questions-about-agricultural-emissions-answered.
Asfaw, D., & Neka, M. (2017). Factors affecting adoption of soil and water conservation practices: the case of Wereillu Woreda (District), South Wollo Zone, Amhara Region, Ethiopia. International Soil and Water Conservation Research, 5(4), 273-279. https://doi.org/10.1016/j.iswcr.2017.10.002
Ataei, Y., Mahmoudi, A., Feylizadeh, M. R., & Li, D. F. (2020). Ordinal priority approach (OPA) in multiple attributedecisionmaking. Applied Soft Computing, 86, 105893. https://doi.org/10.1016/j.asoc.2019.105893
Awasthi, A., Govindan, K., & Gold, S. (2018). Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach. International Journal of Production Economics, 195, 106-117. https://doi.org/10.1016/j.ijpe.2017.10.013
Aydemir, E., & Sahin, Y. (2019). Evaluation of healthcare service quality factors using grey relational analysis in a dialysis center. Grey Systems: Theory and Application, 9(4), 432–448.
Beach, R. H., DeAngelo, B. J., Rose, S., Li, C., Salas, W., & DelGrosso, S. J. (2008). Mitigation potential and costs for global agricultural greenhouse gas emissions 1. Agricultural Economics, 38(2), 109-115. https://doi.org/10.1111/j.1574-0862.2008.00286.x
Bennetzen, E. H., Smith, P., & Porter, J. R. (2016). Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Global Change Biology, 22(2), 763-781. https://doi.org/10.1111/gcb.13120
Bhatia, A., Jain, N., & Pathak, H. (2012). Greenhouse gas emissions from Indian agriculture. Low Carbon Technologies for Agriculture: A Study on Rice and Wheat Systems in the Indo-Gangetic Plains (Pathak H, Aggarwal PK, eds.). New Delhi, India: Indian Agricultural Research Institute.
Birthal, P. S., & Hazrana, J. (2019). Crop diversification and resilience of agriculture to climatic shocks: Evidence from India. Agricultural Systems, 173, 345-354. https://doi.org/10.1016/j.agsy.2019.03.005
Cardoen, D., Joshi, P., Diels, L., Sarma, P. M., & Pant, D. (2015). Agriculture biomass in India: Part 2. Post-harvest losses, cost and environmental impacts. Resources, Conservation and Recycling, 101, 143-153. http://dx.doi.org/10.1016/j.resconrec.2015.06.002
Chen, H.-B., Pei, L.-L., & Zhao, Y.-F. (2021). Forecasting seasonal variations in electricity consumption and electricity usage efficiency of industrial sectors using a grey modeling approach. Energy, 222, 119952. https://doi.org/10.1016/j.energy.2021.119952
Chithambaranathan, P., Subramanian, N., Gunasekaran, A., & Palaniappan, P. K. (2015). Service supply chain environmental performance evaluation using grey based hybrid MCDM approach. International Journal of Production Economics, 166, 163–176. https://doi.org/ 10.1016/j.ijpe.2015.01.002
de Moraes Sá, J. C., Lal, R., Cerri, C. C., Lorenz, K., Hungria, M., & de Faccio Carvalho, P. C. (2017). Low-carbon agriculture in South America to mitigate global climate change and advance food security. Environment International, 98, 102-112. http://dx.doi.org/10.1016/j.envint.2016.10.020
De Stefano, A., & Jacobson, M. G. (2018). Soil carbon sequestration in agroforestry systems: a meta-analysis. Agroforestry Systems, 92(2), 285-299. https://doi.org/10.1007/s10457-017-0147-9
Deshavath, N. N., Veeranki, V. D., & Goud, V. V. (2019). Lignocellulosic feedstocks for the production of bioethanol: availability, structure, and composition. In Sustainable Bioenergy (pp. 1-19). Elsevier. https://doi.org/10.1016/B978-0-12-817654-2.00001-0
Dimassi, B., Cohan, J. P., Labreuche, J., & Mary, B. (2013). Changes in soil carbon and nitrogen following tillage conversion in a long-term experiment in Northern France. Agriculture, Ecosystems & Environment, 169, 12-20. https://doi.org/10.1016/j.agee.2013.01.012
EU. (2018). Archive: Agriculture - greenhouse gas emission statistics. Eurostat. Retrieved from https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Agriculture_-_greenhouse_gas_emission_statistics&oldid=273928 (Accessed on 25 Nov 2020).
FAO. (2020). Sustainable Development Goals. Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/sustainable-development-goals/goals/goal-2/en/ (Accessed on 15 Feb 2021)
FAO. (2021). Sustainable Food and Agriculture. Retrieved from http://www.fao.org/sustainability/en/ (Accessed on 23 Feb 2021)
Field, C. B., Barros, V., Stocker, T., Qin, D., Dokken, D., Ebi, K., ... & Midgley, P. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, NY, USA.
Gerber, P., Vellinga, T., Opio, C., & Steinfeld, H. (2011). Productivity gains and greenhouse gas emissions intensity in dairy systems. Livestock Science, 139(1-2), 100-108. https://doi.org/10.1016/j.livsci.2011.03.012
Ghadimi, P., Toosi, F. G., & Heavey, C. (2018). A multi-agent systems approach for sustainable supplier selection and order allocation in a partnership supply chain. European Journal of Operational Research, 269(1), 286-301. https://doi.org/10.1016/j.ejor.2017.07.014
Gilbert, N. (2012). Dirt poor: the key to tackling hunger in Africa is enriching its soil. The big debate is about how to do it. Nature, 483(7391), 525-528.
Hao, Y., Yeh, T. C. J., Gao, Z., Wang, Y., & Zhao, Y. (2006). A gray system model for studying the response to climatic change: The Liulin karst springs, China. Journal of Hydrology, 328(3-4), 668-676. https://doi.org/10.1016/j.jhydrol.2006.01.022
Hatfield, J., Takle, E., Grotjahn, R., Holden, P., Izaurralde, R. C., Mader, T., ... & Liverman, D. (2014). Agriculture. Climate Change Impacts in the United States: The Third National Climate Assessment. DOI:10.7930/J02Z13FR.
Hendrickson, J. R., Hanson, J. D., Tanaka, D. L., & Sassenrath, G. (2008). Principles of integrated agricultural systems: Introduction to processes and definition. Renewable Agriculture and Food Systems, 23(4), 265-271. https://doi.org/10.1017/S1742170507001718
Hobbs, P. R., Sayre, K., & Gupta, R. (2008). The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 543-555. https://doi.org/10.1098/rstb.2007.2169
Hou, J., & Hou, B. (2019). Farmers' adoption of low-carbon agriculture in China: An extended theory of the planned behavior model. Sustainability, 11(5), 1399. https://doi.org/10.3390/su11051399
Huang, C.-Y., Hsu, C.-C., Chiou, M.-L., & Chen, C.-I. (2020). The main factors affecting Taiwan's economic growth rate via dynamic grey relational analysis. PLOS ONE, 15(10), e0240065. https://doi.org/10.1371/journal.pone.0240065
Ikram, M., Zhang, Q., Sroufe, R., & Ferasso, M. (2021). Contribution of Certification Bodies and Sustainability Standards to Sustainable Development Goals: An Integrated Grey Systems Approach. Sustainable Production and Consumption, 28, 326-345. https://doi.org/10.1016/j.spc.2021.05.019
Javed, S. A., & Liu, S. (2018). Evaluation of outpatient satisfaction and service quality of Pakistani healthcare projects. Grey Systems: Theory and Application, 8(4), 462-480. https://doi.org/10.1108/GS-04-2018-0018
Javed, S. A., Mahmoudi, A., & Liu, S. (2020). Grey Absolute Decision Analysis (GADA) Method for Multiple Criteria Group Decision-Making Under Uncertainty. International Journal of Fuzzy Systems, 22(4), 1073-1090. https://doi.org/10.1007/s40815-020-00827-8
Javed, S.A., & Liu, S. (2019). Bidirectional Absolute GRA/GIA model for Uncertain Systems: Application in Project Management. IEEE Access, 7(1), 60885-60896. 10.1109/ACCESS.2019.2904632
Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423-436. https://doi.org/10.2307/2641104
Ju-Long, D. (1982). Control problems of grey systems. Systems & Control Letters, 1(5), 288-294. https://doi.org/10.1016/S0167-6911(82)80025-X
Kassam, A., Friedrich, T., Shaxson, F., & Pretty, J. (2009). The spread of conservation agriculture: justification, sustainability and uptake. International Journal of Agricultural Sustainability, 7(4), 292-320. https://doi.org/10.3763/ijas.2009.0477
Kassie, M., Köhlin, G., Bluffstone, R., & Holden, S. (2011, May). Are soil conservation technologies "win‐win?" A case study of Anjeni in the north‐western Ethiopian highlands. In natural resources forum (Vol. 35, No. 2, pp. 89-99). Oxford, UK: Blackwell Publishing Ltd. https://doi.org/10.1111/j.1477-8947.2011.01379.x
Kato, E., Ringler, C., Yesuf, M., & Bryan, E. (2011). Soil and water conservation technologies: a buffer against production risk in the face of climate change? Insights from the Nile basin in Ethiopia. Agricultural Economics, 42(5), 593-604. https://doi.org/10.1111/j.1574-0862.2011.00539.x
Khan, R. (2020). Agricultural production and CO2 emissions causes in the developing and developed countries: New insights from quantile regression and decomposition analysis. bioRxiv. https://doi.org/10.1101/2020.11.16.384370
Kumar, P., & Singh, R. K. (2021). Selection of sustainable solutions for crop residue burning: an environmental issue in northwestern states of India. Environment, Development and Sustainability, 23(3), 3696-3730. https://doi.org/10.1007/s10668-020-00741-x
Lambrecht, I., Vanlauwe, B., & Maertens, M. (2016). Integrated soil fertility management: from concept to practice in Eastern DR Congo. International Journal of Agricultural Sustainability, 14(1), 100-118. https://doi.org/10.1080/14735903.2015.1026047
Li, J., Fang, H., & Song, W. (2019). Sustainable supplier selection based on SSCM practices: A rough cloud TOPSIS approach. Journal of Cleaner Production, 222, 606-621. https://doi.org/10.1016/j.jclepro.2019.03.070
Li, W., Ruiz-Menjivar, J., Zhang, L., & Zhang, J. (2021). Climate change perceptions and the adoption of low-carbon agricultural technologies: Evidence from rice production systems in the Yangtze River Basin. Science of The Total Environment, 759, 143554. https://doi.org/10.1016/j.scitotenv.2020.143554
Lithourgidis, A. S., Dordas, C. A., Damalas, C. A., & Vlachostergios, D. (2011). Annual intercrops: an alternative pathway for sustainable agriculture. Australian Journal of Crop Science, 5(4), 396-410. https://search.informit.org/doi/10.3316/informit.281409060336481
Luo, Z., Wang, E., & Sun, O. J. (2010). Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agriculture, Ecosystems & Environment, 139(1-2), 224-231. https://doi.org/10.1016/j.agee.2010.08.006
Lybbert, T. J., & Sumner, D. A. (2012). Agricultural technologies for climate change in developing countries: Policy options for innovation and technology diffusion. Food Policy, 37(1), 114-123. DOI: 10.1016/j.foodpol.2011.11.001
Ma, X. (2019). A Brief Introduction to the Grey Machine Learning. The Journal of Grey System, 31(1), 1-12.
Magrini, M. B., Anton, M., Cholez, C., Corre-Hellou, G., Duc, G., Jeuffroy, M. H., ... & Walrand, S. (2016). Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lock-in in the French agrifood system. Ecological Economics, 126, 152-162. https://doi.org/10.1016/j.ecolecon.2016.03.024
Mahmoudi, A., Deng, X., Javed, S. A., & Yuan, J. (2020a). Large-scale multiple criteria decision-making with missing values: project selection through TOPSIS-OPA. Journal of Ambient Intelligence and Humanized Computing, 1-22. https://doi.org/10.1007/s12652-020-02649-w
Mahmoudi, A., Deng, X., Javed, S. A., & Zhang, N. (2021a). Sustainable supplier selection in megaprojects: Grey Ordinal Priority Approach. Business Strategy and the Environment, 30(1), 318-339. https://doi.org/10.1002/bse.2623
Mahmoudi, A., Javed, S. A., & Mardani, A. (2021b). Gresilient Supplier Selection through Fuzzy Ordinal Priority Approach: Decision-making in Post-COVID era. Operations Management Research. DOI:10.1007/s12063-021-00178-z
Mahmoudi, A., Javed, S. A., Liu, S., & Deng, X. (2020b). Distinguishing coefficient driven sensitivity analysis of GRA model for intelligent decisions: application in project management. Technological and Economic Development of Economy, 26(3), 621-641. DOI: https://doi.org/10.3846/tede.2020.11890
MAPA. (2020). Ministry of Agriculture, Livestock, and Food Supply. Plano ABC em Números. https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/ plano-abc/plano-abc-em-numeros. (Accessed 10 Dec 2020)
Martin, D. A., Osen, K., Grass, I., Hölscher, D., Tscharntke, T., Wurz, A., & Kreft, H. (2020). Land‐use history determines ecosystem services and conservation value in tropical agroforestry. Conservation Letters, 13(5), e12740. https://doi.org/10.1111/conl.12740
Memari, A., Dargi, A., Jokar, M. R. A., Ahmad, R., & Rahim, A. R. A. (2019). Sustainable supplier selection: A multi-criteria intuitionistic fuzzy TOPSIS method. Journal of Manufacturing Systems, 50, 9-24. https://doi.org/10.1016/j.jmsy.2018.11.002
Meynard, J. M., Charrier, F., Le Bail, M., Magrini, M. B., Charlier, A., & Messéan, A. (2018). Socio-technical lock-in hinders crop diversification in France. Agronomy for Sustainable Development, 38(5), 54. https://doi.org/10.1007/s13593-018-0535-1
Mo, D., Jiang, Q. Y., Li, D. Q., Chen, C. J., Zhang, B. M., & Liu, J. W. (2017). Controlled-source electromagnetic data processing based on gray system theory and robust estimation. Applied Geophysics, 14(4), 570-580. https://doi.org/10.1007/s11770-017-0646-5
Moraine, M., Duru, M., Nicholas, P., Leterme, P., & Therond, O. (2014). Farming system design for innovative crop-livestock integration in Europe. Animal, 8(8), 1204-1217. https://doi.org/10.1017/S1751731114001189
Mwalupaso, G. E., Korotoumou, M., Eshetie, A. M., Alavo, J. P. E., & Tian, X. (2019). Recuperating dynamism in agriculture through adoption of sustainable agricultural technology-Implications for cleaner production. Journal of Cleaner Production, 232, 639-647. https://doi.org/10.1016/j.jclepro.2019.05.366
Nair, P. K. R., Mohan Kumar, B., & Nair, V. D. (2009). Agroforestry as a strategy for carbon sequestration. Journal of Plant Nutrition and Soil Science, 172(1), 10-23. https://doi.org/10.1002/jpln.200800030
Nair, P. K. R., Nair, V. D., Kumar, B. M., & Showalter, J. M. (2010). Carbon sequestration in agroforestry systems. Advances in Agronomy, 108, 237-307. https://doi.org/10.1016/S0065-2113(10)08005-3
Olesen, J. E., Trnka, M., Kersebaum, K. C., Skjelvåg, A. O., Seguin, B., Peltonen-Sainio, P., ... & Micale, F. (2011). Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy, 34(2), 96-112. https://doi.org/10.1016/j.eja.2010.11.003
Page, K. L., Dang, Y. P., Dalal, R. C., Reeves, S., Thomas, G., Wang, W., & Thompson, J. P. (2019). Changes in soil water storage with no-tillage and crop residue retention on a Vertisol: Impact on productivity and profitability over a 50 year period. Soil and Tillage Research, 194, 104319. https://doi.org/10.1016/j.still.2019.104319
Pathak, H., Chakrabarti, B., & Aggarwal, P. K. (2012). Promotion of low carbon technologies in Indian Agriculture: Opportunities and Constraints. Low Carbon Technologies for Agriculture: A Study on Rice and Wheat Systems in the Indo-Gangetic Plains. New Delhi, India: Indian Agricultural Research Institute.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature, 532(7597), 49-57. https://doi.org/10.1016/j.scitotenv.2020.139506
Powlson, D. S., Stirling, C. M., Jat, M. L., Gerard, B. G., Palm, C. A., Sanchez, P. A., & Cassman, K. G. (2014). Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4(8), 678-683. https://doi.org/10.1038/nclimate2292
Powlson, D. S., Stirling, C. M., Thierfelder, C., White, R. P., & Jat, M. L. (2016). Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems?. Agriculture, Ecosystems & Environment, 220, 164-174. https://doi.org/10.1016/j.agee.2016.01.005
Prasad, S., Singh, A., Korres, N. E., Rathore, D., Sevda, S., & Pant, D. (2020). Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective. Bioresource Technology, 303, 122964. https://doi.org/10.1016/j.biortech.2020.122964
Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6(1), 1-9. https://doi.org/10.1038/ncomms6989
Rehman, A., Ma, H., Irfan, M., & Ahmad, M. (2020). Does carbon dioxide, methane, nitrous oxide, and GHG emissions influence the agriculture? Evidence from China. Environmental Science and Pollution Research, 27(23), 28768-28779. https://doi.org/10.1007/s11356-020-08912-z
Ren, J., Liang, H., & Chan, F. T. (2017). Urban sewage sludge, sustainability, and transition for Eco-City: Multi-criteria sustainability assessment of technologies based on best-worst method. Technological Forecasting and Social Change, 116, 29-39. https://doi.org/10.1016/j.techfore.2016.10.070
Roobroeck, D., van Asten, P. J., Jama, B., Harawa, R., & Vanlauwe, B. (2015). Integrated Soil Fertility Management: Contributions of framework and practices to climate-smart agriculture. Climate-Smart Agriculture Practice Brief. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security https://hdl.handle.net/20.500.12478/724
Russell, S. (2014). Everything You Need to Know About Agricultural Emissions. World Resources Institute. Retrieved from https://www.wri.org/insights/everything-you-need-know-about-agricultural-emissions
Russelle, M. P., Entz, M. H., & Franzluebbers, A. J. (2007). Reconsidering integrated crop–livestock systems in North America. Agronomy Journal, 99(2), 325334. https://doi.org/10.2134/agronj2006.0139
Schlesinger, W. H. (1999). Carbon sequestration in soils. Science, 284(5423), 2095. DOI:10.1126/science.284.5423.2095.
Shajedul, I. (2021). Islam's Grey Ordinal Priority Approach Algorithm. Zenodo. Retrieved from https://doi.org/10.5281/zenodo.4674547
Sheikh, A. H. A., Ikram, M., Ahmad, R. M., Qadeer, H., & Nawaz, M. (2019). Evaluation of key factors influencing process quality during construction projects in Pakistan. Grey Systems: Theory and Application, 9(3), 321–335. https://doi.org/10.1108/GS-01-2019-0002
Sikora, J., Niemiec, M., Szeląg-Sikora, A., Gródek-Szostak, Z., Kuboń, M., & Komorowska, M. (2020). The Impact of a Controlled-Release Fertilizer on Greenhouse Gas Emissions and the Efficiency of the Production of Chinese Cabbage. Energies, 13(8), 2063. https://doi.org/10.3390/en13082063
Singha, C., Swain, K. C., & Swain, S. K. (2020). Best crop rotation selection with GIS-AHP technique using soil nutrient variability. Agriculture, 10(6), 213. https://doi.org/10.3390/agriculture10060213
Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79(1), 7-31. https://doi.org/10.1016/j.still.2004.03.008
Smith, P., Clark, H., Dong, H., Elsiddig, E. A., Haberl, H., Harper, R., ... & Tubiello, F. (2014). Agriculture, forestry and other land use (AFOLU). The Intergovernmental Panel on Climate Change. Retrieved from http://www.ipcc.ch/pdf/assessment-report/ar5/wg3/i
Tan, Q., Farquharson, B., Chen, D., & Liu, J. (2014). An analysis of factors influencing the output value of unit sown area based on grey incidence analysis. Grey Systems: Theory and Application, 4(1), 56–71. https://doi.org/10.1108/GS-09-2012-0032
Tian, Y., Zhang, J., & Li, B. (2011). Research on spatial-temporal characteristics and factor decomposition of agricultural carbon emission based on input angle-taking Hubei Province for example. Research of Agricultural Modernization, 32(6), 752-755.
Tongwane, M. I., & Moeletsi, M. E. (2018). A review of greenhouse gas emissions from the agriculture sector in Africa. Agricultural Systems, 166, 124-134. https://doi.org/10.1016/j.agsy.2018.08.011
Uppala, S., Chapala, M. M., Kumar, K. V. K., Pavuluri, K., & Chandra, K. J. (2016). Climate Change, Carbon Offsets and Low Carbon Technologies in Agriculture: A Review. International Journal of Horticulture & Agriculture, 2(1),1-8. https://doi.org/10.15226/2572-3154/2/1/00106
Ussiri, D. A., & Lal, R. (2009). Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil and Tillage Research, 104(1), 39-47. https://doi.org/10.1016/j.still.2008.11.008
Valani, G. P., Martíni, A. F., da Silva, L. F. S., Bovi, R. C., & Cooper, M. (2021). Soil quality assessments in integrated crop–livestock–forest systems: A review. Soil Use and Management, 37(1), 22-36. https://doi.org/10.1111/sum.12667
Valbuena, D., Erenstein, O., Tui, S. H. K., Abdoulaye, T., Claessens, L., Duncan, A. J., ... & van Wijk, M. T. (2012). Conservation Agriculture in mixed crop–livestock systems: Scoping crop residue trade-offs in Sub-Saharan Africa and South Asia. Field Crops Research, 132, 175-184. https://doi.org/10.1016/j.fcr.2012.02.022
Vanlauwe, B., Descheemaeker, K., Giller, K. E., Huising, J., Merckx, R., Nziguheba, G., ... & Zingore, S. (2015). Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation. Soil, 1(1), 491-508. https://doi.org/10.5194/soil-1-491-2015
Vetter, S. H., Sapkota, T. B., Hillier, J., Stirling, C. M., Macdiarmid, J. I., Aleksandrowicz, L., ... & Smith, P. (2017). Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation. Agriculture, Ecosystems & Environment, 237, 234-241. https://doi.org/10.1016/j.agee.2016.12.024
Vinholis, M. D. M. B., Saes, M. S. M., Carrer, M. J., & de Souza Filho, H. M. (2020). The effect of meso-institutions on adoption of sustainable agricultural technology: A case study of the Brazilian Low Carbon Agriculture Plan. Journal of Cleaner Production, 280, 124334. https://doi.org/10.1016/j.jclepro.2020.124334
Waldron, A., Garrity, D., Malhi, Y., Girardin, C., Miller, D. C., & Seddon, N. (2017). Agroforestry can enhance food security while meeting other sustainable development goals. Tropical Conservation Science, 10, 1940082917720667. https://doi.org/10.1177/1940082917720667
Wang, B., Song, J., Ren, J., Li, K., & Duan, H. (2019). Selecting sustainable energy conversion technologies for agricultural residues: A fuzzy AHP-VIKOR based prioritization from life cycle perspective. Resources, Conservation and Recycling, 142, 78-87. https://doi.org/10.1016/j.resconrec.2018.11.011
West, T. O., & Marland, G. (2002). A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems & Environment, 91(1-3), 217-232. https://doi.org/10.1016/S0167-8809(01)00233-X
Wheeler, T., & Von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508-513. https://doi.org/10.1126/science.1239402
Xiao, X., Duan, H., & Wen, J. (2020). A novel car-following inertia gray model and its application in forecasting short-term traffic flow. Applied Mathematical Modelling, 87, 546-570. https://doi.org/10.1016/j.apm.2020.06.020
Xie, W, Wu, W., & Liu, C. (2021). An unified framework for fractional grey system models: Memory effects perspective. arXiv. https://arxiv.org/abs/2103.10809v1
Yaekob, T., Tamene, L., Gebrehiwot, S. G., Demissie, S. S., Adimassu, Z., Woldearegay, K., ... & Thorne, P. (2020). Assessing the impacts of different land uses and soil and water conservation interventions on runoff and sediment yield at different scales in the central highlands of Ethiopia. Renewable Agriculture and Food Systems, 1-15. https://doi.org/10.1017/S1742170520000010.
Yu, C., Shao, Y., Wang, K., & Zhang, L. (2019). A group decision making sustainable supplier selection approach using extended TOPSIS under interval-valued Pythagorean fuzzy environment. Expert Systems with Applications, 121, 1-17. https://doi.org/10.1016/j.eswa.2018.12.010
Zhu, B., Yuan, L., & Ye, S. (2019). Examining the multi-timescales of European carbon market with grey relational analysis and empirical mode decomposition. Physica A-Statistical Mechanics and Its Applications, 517, 392–399. https://doi.org/10.1016/j.physa.2018.11.016
.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Science Insight
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Creative Commons Non Commercial CC BY-NC: The work is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is properly attributed.