Evaluation of Low-Carbon Sustainable Technologies in Agriculture Sector through Grey Ordinal Priority Approach

Authors

  • Shajedul Islam Nanjing University of Information Science and Technology

DOI:

https://doi.org/10.52812/ijgs.3

Keywords:

Low-carbon and sustainable agricultural technologies, decision making, Grey System Theory, sustainable development

Abstract

The agriculture sector plays a vital role in the economy, society, and environment, the three dimensions of sustainability. The agriculture sector contributes 12% to 14% of global greenhouse gas (GHG) emissions to the atmosphere, negatively impacting climate change. Using low-carbon and sustainable agricultural technologies can help mitigate climate change and global food security issues. But selecting and prioritizing the best technologies among all alternatives has always been an issue for decision-makers because of various uncertainty related to the agricultural sector. Therefore, the current study intends to identify and prioritize the key low-carbon and sustainable agricultural technologies. The current study makes a pioneering attempt in employing the Grey Ordinal Priority Approach (OPA-G), a modern multi-attribute decision-making technique, for the evaluation of low-carbon and sustainable technologies for the agricultural sector.

 

References

Abdalla, K., Chivenge, P., Ciais, P., & Chaplot, V. (2016). No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: results from a meta-analysis. Biogeosciences, 13(12), 3619-3633. https://doi.org/10.5194/bg-13-3619-2016

Abid, N., Ikram, M., Wu, J., & Ferasso, M. (2021). Towards environmental sustainability: Exploring the nexus among ISO 14001, governance indicators and green economy in Pakistan. Sustainable Production and Consumption, 27, 653–666. https://doi.org/10.1016/j.spc.2021.01.024

Adimassu, Z., Langan, S., Johnston, R., Mekuria, W., & Amede, T. (2017). Impacts of soil and water conservation practices on crop yield, run-off, soil loss and nutrient loss in Ethiopia: review and synthesis. Environmental Management, 59(1), 87-101. https://doi.org/10.1007/s00267-016-0776-1

Amadu, F. O., Miller, D. C., & McNamara, P. E. (2020). Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: Evidence from southern Malawi. Ecological Economics, 167, 106443. https://doi.org/10.1016/j.ecolecon.2019.106443

Amindoust, A. (2018). A resilient-sustainable based supplier selection model using a hybrid intelligent method. Computers & Industrial Engineering, 126, 122-135. https://doi.org/10.1016/j.cie.2018.09.031

An, D., Xi, B., Ren, J., Ren, X., Zhang, W., Wang, Y., & Dong, L. (2018). Multi-criteria sustainability assessment of urban sludge treatment technologies: Method and case study. Resources, Conservation and Recycling, 128, 546-554. https://doi.org/10.1016/j.resconrec.2016.08.018

Anuga, S. W., Chirinda, N., Nukpezah, D., Ahenkan, A., Andrieu, N., & Gordon, C. (2020). Towards low carbon agriculture: Systematic-narratives of climate-smart agriculture mitigation potential in Africa. Current Research in Environmental Sustainability, 2, 100015. http://dx.doi.org/10.1016/j.crsust.2020.100015

Arcipowska, A. Mangan, E. Lyu, Y. Wate, R. (2019, July 29). 5 Questions About Agricultural Emissions, Answered. World Resources Institute. Retrieved from https://www.wri.org/blog/2019/07/5-questions-about-agricultural-emissions-answered.

Asfaw, D., & Neka, M. (2017). Factors affecting adoption of soil and water conservation practices: the case of Wereillu Woreda (District), South Wollo Zone, Amhara Region, Ethiopia. International Soil and Water Conservation Research, 5(4), 273-279. https://doi.org/10.1016/j.iswcr.2017.10.002

Ataei, Y., Mahmoudi, A., Feylizadeh, M. R., & Li, D. F. (2020). Ordinal priority approach (OPA) in multiple attributedecisionmaking. Applied Soft Computing, 86, 105893. https://doi.org/10.1016/j.asoc.2019.105893

Awasthi, A., Govindan, K., & Gold, S. (2018). Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach. International Journal of Production Economics, 195, 106-117. https://doi.org/10.1016/j.ijpe.2017.10.013

Aydemir, E., & Sahin, Y. (2019). Evaluation of healthcare service quality factors using grey relational analysis in a dialysis center. Grey Systems: Theory and Application, 9(4), 432–448.

Beach, R. H., DeAngelo, B. J., Rose, S., Li, C., Salas, W., & DelGrosso, S. J. (2008). Mitigation potential and costs for global agricultural greenhouse gas emissions 1. Agricultural Economics, 38(2), 109-115. https://doi.org/10.1111/j.1574-0862.2008.00286.x

Bennetzen, E. H., Smith, P., & Porter, J. R. (2016). Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Global Change Biology, 22(2), 763-781. https://doi.org/10.1111/gcb.13120

Bhatia, A., Jain, N., & Pathak, H. (2012). Greenhouse gas emissions from Indian agriculture. Low Carbon Technologies for Agriculture: A Study on Rice and Wheat Systems in the Indo-Gangetic Plains (Pathak H, Aggarwal PK, eds.). New Delhi, India: Indian Agricultural Research Institute.

Birthal, P. S., & Hazrana, J. (2019). Crop diversification and resilience of agriculture to climatic shocks: Evidence from India. Agricultural Systems, 173, 345-354. https://doi.org/10.1016/j.agsy.2019.03.005

Cardoen, D., Joshi, P., Diels, L., Sarma, P. M., & Pant, D. (2015). Agriculture biomass in India: Part 2. Post-harvest losses, cost and environmental impacts. Resources, Conservation and Recycling, 101, 143-153. http://dx.doi.org/10.1016/j.resconrec.2015.06.002

Chen, H.-B., Pei, L.-L., & Zhao, Y.-F. (2021). Forecasting seasonal variations in electricity consumption and electricity usage efficiency of industrial sectors using a grey modeling approach. Energy, 222, 119952. https://doi.org/10.1016/j.energy.2021.119952

Chithambaranathan, P., Subramanian, N., Gunasekaran, A., & Palaniappan, P. K. (2015). Service supply chain environmental performance evaluation using grey based hybrid MCDM approach. International Journal of Production Economics, 166, 163–176. https://doi.org/ 10.1016/j.ijpe.2015.01.002

de Moraes Sá, J. C., Lal, R., Cerri, C. C., Lorenz, K., Hungria, M., & de Faccio Carvalho, P. C. (2017). Low-carbon agriculture in South America to mitigate global climate change and advance food security. Environment International, 98, 102-112. http://dx.doi.org/10.1016/j.envint.2016.10.020

De Stefano, A., & Jacobson, M. G. (2018). Soil carbon sequestration in agroforestry systems: a meta-analysis. Agroforestry Systems, 92(2), 285-299. https://doi.org/10.1007/s10457-017-0147-9

Deshavath, N. N., Veeranki, V. D., & Goud, V. V. (2019). Lignocellulosic feedstocks for the production of bioethanol: availability, structure, and composition. In Sustainable Bioenergy (pp. 1-19). Elsevier. https://doi.org/10.1016/B978-0-12-817654-2.00001-0

Dimassi, B., Cohan, J. P., Labreuche, J., & Mary, B. (2013). Changes in soil carbon and nitrogen following tillage conversion in a long-term experiment in Northern France. Agriculture, Ecosystems & Environment, 169, 12-20. https://doi.org/10.1016/j.agee.2013.01.012

EU. (2018). Archive: Agriculture - greenhouse gas emission statistics. Eurostat. Retrieved from https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Agriculture_-_greenhouse_gas_emission_statistics&oldid=273928 (Accessed on 25 Nov 2020).

FAO. (2020). Sustainable Development Goals. Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/sustainable-development-goals/goals/goal-2/en/ (Accessed on 15 Feb 2021)

FAO. (2021). Sustainable Food and Agriculture. Retrieved from http://www.fao.org/sustainability/en/ (Accessed on 23 Feb 2021)

Field, C. B., Barros, V., Stocker, T., Qin, D., Dokken, D., Ebi, K., ... & Midgley, P. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, NY, USA.

Gerber, P., Vellinga, T., Opio, C., & Steinfeld, H. (2011). Productivity gains and greenhouse gas emissions intensity in dairy systems. Livestock Science, 139(1-2), 100-108. https://doi.org/10.1016/j.livsci.2011.03.012

Ghadimi, P., Toosi, F. G., & Heavey, C. (2018). A multi-agent systems approach for sustainable supplier selection and order allocation in a partnership supply chain. European Journal of Operational Research, 269(1), 286-301. https://doi.org/10.1016/j.ejor.2017.07.014

Gilbert, N. (2012). Dirt poor: the key to tackling hunger in Africa is enriching its soil. The big debate is about how to do it. Nature, 483(7391), 525-528.

Hao, Y., Yeh, T. C. J., Gao, Z., Wang, Y., & Zhao, Y. (2006). A gray system model for studying the response to climatic change: The Liulin karst springs, China. Journal of Hydrology, 328(3-4), 668-676. https://doi.org/10.1016/j.jhydrol.2006.01.022

Hatfield, J., Takle, E., Grotjahn, R., Holden, P., Izaurralde, R. C., Mader, T., ... & Liverman, D. (2014). Agriculture. Climate Change Impacts in the United States: The Third National Climate Assessment. DOI:10.7930/J02Z13FR.

Hendrickson, J. R., Hanson, J. D., Tanaka, D. L., & Sassenrath, G. (2008). Principles of integrated agricultural systems: Introduction to processes and definition. Renewable Agriculture and Food Systems, 23(4), 265-271. https://doi.org/10.1017/S1742170507001718

Hobbs, P. R., Sayre, K., & Gupta, R. (2008). The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 543-555. https://doi.org/10.1098/rstb.2007.2169

Hou, J., & Hou, B. (2019). Farmers' adoption of low-carbon agriculture in China: An extended theory of the planned behavior model. Sustainability, 11(5), 1399. https://doi.org/10.3390/su11051399

Huang, C.-Y., Hsu, C.-C., Chiou, M.-L., & Chen, C.-I. (2020). The main factors affecting Taiwan's economic growth rate via dynamic grey relational analysis. PLOS ONE, 15(10), e0240065. https://doi.org/10.1371/journal.pone.0240065

Ikram, M., Zhang, Q., Sroufe, R., & Ferasso, M. (2021). Contribution of Certification Bodies and Sustainability Standards to Sustainable Development Goals: An Integrated Grey Systems Approach. Sustainable Production and Consumption, 28, 326-345. https://doi.org/10.1016/j.spc.2021.05.019

Javed, S. A., & Liu, S. (2018). Evaluation of outpatient satisfaction and service quality of Pakistani healthcare projects. Grey Systems: Theory and Application, 8(4), 462-480. https://doi.org/10.1108/GS-04-2018-0018

Javed, S. A., Mahmoudi, A., & Liu, S. (2020). Grey Absolute Decision Analysis (GADA) Method for Multiple Criteria Group Decision-Making Under Uncertainty. International Journal of Fuzzy Systems, 22(4), 1073-1090. https://doi.org/10.1007/s40815-020-00827-8

Javed, S.A., & Liu, S. (2019). Bidirectional Absolute GRA/GIA model for Uncertain Systems: Application in Project Management. IEEE Access, 7(1), 60885-60896. 10.1109/ACCESS.2019.2904632

Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423-436. https://doi.org/10.2307/2641104

Ju-Long, D. (1982). Control problems of grey systems. Systems & Control Letters, 1(5), 288-294. https://doi.org/10.1016/S0167-6911(82)80025-X

Kassam, A., Friedrich, T., Shaxson, F., & Pretty, J. (2009). The spread of conservation agriculture: justification, sustainability and uptake. International Journal of Agricultural Sustainability, 7(4), 292-320. https://doi.org/10.3763/ijas.2009.0477

Kassie, M., Köhlin, G., Bluffstone, R., & Holden, S. (2011, May). Are soil conservation technologies "win‐win?" A case study of Anjeni in the north‐western Ethiopian highlands. In natural resources forum (Vol. 35, No. 2, pp. 89-99). Oxford, UK: Blackwell Publishing Ltd. https://doi.org/10.1111/j.1477-8947.2011.01379.x

Kato, E., Ringler, C., Yesuf, M., & Bryan, E. (2011). Soil and water conservation technologies: a buffer against production risk in the face of climate change? Insights from the Nile basin in Ethiopia. Agricultural Economics, 42(5), 593-604. https://doi.org/10.1111/j.1574-0862.2011.00539.x

Khan, R. (2020). Agricultural production and CO2 emissions causes in the developing and developed countries: New insights from quantile regression and decomposition analysis. bioRxiv. https://doi.org/10.1101/2020.11.16.384370

Kumar, P., & Singh, R. K. (2021). Selection of sustainable solutions for crop residue burning: an environmental issue in northwestern states of India. Environment, Development and Sustainability, 23(3), 3696-3730. https://doi.org/10.1007/s10668-020-00741-x

Lambrecht, I., Vanlauwe, B., & Maertens, M. (2016). Integrated soil fertility management: from concept to practice in Eastern DR Congo. International Journal of Agricultural Sustainability, 14(1), 100-118. https://doi.org/10.1080/14735903.2015.1026047

Li, J., Fang, H., & Song, W. (2019). Sustainable supplier selection based on SSCM practices: A rough cloud TOPSIS approach. Journal of Cleaner Production, 222, 606-621. https://doi.org/10.1016/j.jclepro.2019.03.070

Li, W., Ruiz-Menjivar, J., Zhang, L., & Zhang, J. (2021). Climate change perceptions and the adoption of low-carbon agricultural technologies: Evidence from rice production systems in the Yangtze River Basin. Science of The Total Environment, 759, 143554. https://doi.org/10.1016/j.scitotenv.2020.143554

Lithourgidis, A. S., Dordas, C. A., Damalas, C. A., & Vlachostergios, D. (2011). Annual intercrops: an alternative pathway for sustainable agriculture. Australian Journal of Crop Science, 5(4), 396-410. https://search.informit.org/doi/10.3316/informit.281409060336481

Luo, Z., Wang, E., & Sun, O. J. (2010). Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agriculture, Ecosystems & Environment, 139(1-2), 224-231. https://doi.org/10.1016/j.agee.2010.08.006

Lybbert, T. J., & Sumner, D. A. (2012). Agricultural technologies for climate change in developing countries: Policy options for innovation and technology diffusion. Food Policy, 37(1), 114-123. DOI: 10.1016/j.foodpol.2011.11.001

Ma, X. (2019). A Brief Introduction to the Grey Machine Learning. The Journal of Grey System, 31(1), 1-12.

Magrini, M. B., Anton, M., Cholez, C., Corre-Hellou, G., Duc, G., Jeuffroy, M. H., ... & Walrand, S. (2016). Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lock-in in the French agrifood system. Ecological Economics, 126, 152-162. https://doi.org/10.1016/j.ecolecon.2016.03.024

Mahmoudi, A., Deng, X., Javed, S. A., & Yuan, J. (2020a). Large-scale multiple criteria decision-making with missing values: project selection through TOPSIS-OPA. Journal of Ambient Intelligence and Humanized Computing, 1-22. https://doi.org/10.1007/s12652-020-02649-w

Mahmoudi, A., Deng, X., Javed, S. A., & Zhang, N. (2021a). Sustainable supplier selection in megaprojects: Grey Ordinal Priority Approach. Business Strategy and the Environment, 30(1), 318-339. https://doi.org/10.1002/bse.2623

Mahmoudi, A., Javed, S. A., & Mardani, A. (2021b). Gresilient Supplier Selection through Fuzzy Ordinal Priority Approach: Decision-making in Post-COVID era. Operations Management Research. DOI:10.1007/s12063-021-00178-z

Mahmoudi, A., Javed, S. A., Liu, S., & Deng, X. (2020b). Distinguishing coefficient driven sensitivity analysis of GRA model for intelligent decisions: application in project management. Technological and Economic Development of Economy, 26(3), 621-641. DOI: https://doi.org/10.3846/tede.2020.11890

MAPA. (2020). Ministry of Agriculture, Livestock, and Food Supply. Plano ABC em Números. https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/ plano-abc/plano-abc-em-numeros. (Accessed 10 Dec 2020)

Martin, D. A., Osen, K., Grass, I., Hölscher, D., Tscharntke, T., Wurz, A., & Kreft, H. (2020). Land‐use history determines ecosystem services and conservation value in tropical agroforestry. Conservation Letters, 13(5), e12740. https://doi.org/10.1111/conl.12740

Memari, A., Dargi, A., Jokar, M. R. A., Ahmad, R., & Rahim, A. R. A. (2019). Sustainable supplier selection: A multi-criteria intuitionistic fuzzy TOPSIS method. Journal of Manufacturing Systems, 50, 9-24. https://doi.org/10.1016/j.jmsy.2018.11.002

Meynard, J. M., Charrier, F., Le Bail, M., Magrini, M. B., Charlier, A., & Messéan, A. (2018). Socio-technical lock-in hinders crop diversification in France. Agronomy for Sustainable Development, 38(5), 54. https://doi.org/10.1007/s13593-018-0535-1

Mo, D., Jiang, Q. Y., Li, D. Q., Chen, C. J., Zhang, B. M., & Liu, J. W. (2017). Controlled-source electromagnetic data processing based on gray system theory and robust estimation. Applied Geophysics, 14(4), 570-580. https://doi.org/10.1007/s11770-017-0646-5

Moraine, M., Duru, M., Nicholas, P., Leterme, P., & Therond, O. (2014). Farming system design for innovative crop-livestock integration in Europe. Animal, 8(8), 1204-1217. https://doi.org/10.1017/S1751731114001189

Mwalupaso, G. E., Korotoumou, M., Eshetie, A. M., Alavo, J. P. E., & Tian, X. (2019). Recuperating dynamism in agriculture through adoption of sustainable agricultural technology-Implications for cleaner production. Journal of Cleaner Production, 232, 639-647. https://doi.org/10.1016/j.jclepro.2019.05.366

Nair, P. K. R., Mohan Kumar, B., & Nair, V. D. (2009). Agroforestry as a strategy for carbon sequestration. Journal of Plant Nutrition and Soil Science, 172(1), 10-23. https://doi.org/10.1002/jpln.200800030

Nair, P. K. R., Nair, V. D., Kumar, B. M., & Showalter, J. M. (2010). Carbon sequestration in agroforestry systems. Advances in Agronomy, 108, 237-307. https://doi.org/10.1016/S0065-2113(10)08005-3

Olesen, J. E., Trnka, M., Kersebaum, K. C., Skjelvåg, A. O., Seguin, B., Peltonen-Sainio, P., ... & Micale, F. (2011). Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy, 34(2), 96-112. https://doi.org/10.1016/j.eja.2010.11.003

Page, K. L., Dang, Y. P., Dalal, R. C., Reeves, S., Thomas, G., Wang, W., & Thompson, J. P. (2019). Changes in soil water storage with no-tillage and crop residue retention on a Vertisol: Impact on productivity and profitability over a 50 year period. Soil and Tillage Research, 194, 104319. https://doi.org/10.1016/j.still.2019.104319

Pathak, H., Chakrabarti, B., & Aggarwal, P. K. (2012). Promotion of low carbon technologies in Indian Agriculture: Opportunities and Constraints. Low Carbon Technologies for Agriculture: A Study on Rice and Wheat Systems in the Indo-Gangetic Plains. New Delhi, India: Indian Agricultural Research Institute.

Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature, 532(7597), 49-57. https://doi.org/10.1016/j.scitotenv.2020.139506

Powlson, D. S., Stirling, C. M., Jat, M. L., Gerard, B. G., Palm, C. A., Sanchez, P. A., & Cassman, K. G. (2014). Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4(8), 678-683. https://doi.org/10.1038/nclimate2292

Powlson, D. S., Stirling, C. M., Thierfelder, C., White, R. P., & Jat, M. L. (2016). Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems?. Agriculture, Ecosystems & Environment, 220, 164-174. https://doi.org/10.1016/j.agee.2016.01.005

Prasad, S., Singh, A., Korres, N. E., Rathore, D., Sevda, S., & Pant, D. (2020). Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective. Bioresource Technology, 303, 122964. https://doi.org/10.1016/j.biortech.2020.122964

Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6(1), 1-9. https://doi.org/10.1038/ncomms6989

Rehman, A., Ma, H., Irfan, M., & Ahmad, M. (2020). Does carbon dioxide, methane, nitrous oxide, and GHG emissions influence the agriculture? Evidence from China. Environmental Science and Pollution Research, 27(23), 28768-28779. https://doi.org/10.1007/s11356-020-08912-z

Ren, J., Liang, H., & Chan, F. T. (2017). Urban sewage sludge, sustainability, and transition for Eco-City: Multi-criteria sustainability assessment of technologies based on best-worst method. Technological Forecasting and Social Change, 116, 29-39. https://doi.org/10.1016/j.techfore.2016.10.070

Roobroeck, D., van Asten, P. J., Jama, B., Harawa, R., & Vanlauwe, B. (2015). Integrated Soil Fertility Management: Contributions of framework and practices to climate-smart agriculture. Climate-Smart Agriculture Practice Brief. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security https://hdl.handle.net/20.500.12478/724

Russell, S. (2014). Everything You Need to Know About Agricultural Emissions. World Resources Institute. Retrieved from https://www.wri.org/insights/everything-you-need-know-about-agricultural-emissions

Russelle, M. P., Entz, M. H., & Franzluebbers, A. J. (2007). Reconsidering integrated crop–livestock systems in North America. Agronomy Journal, 99(2), 325334. https://doi.org/10.2134/agronj2006.0139

Schlesinger, W. H. (1999). Carbon sequestration in soils. Science, 284(5423), 2095. DOI:10.1126/science.284.5423.2095.

Shajedul, I. (2021). Islam's Grey Ordinal Priority Approach Algorithm. Zenodo. Retrieved from https://doi.org/10.5281/zenodo.4674547

Sheikh, A. H. A., Ikram, M., Ahmad, R. M., Qadeer, H., & Nawaz, M. (2019). Evaluation of key factors influencing process quality during construction projects in Pakistan. Grey Systems: Theory and Application, 9(3), 321–335. https://doi.org/10.1108/GS-01-2019-0002

Sikora, J., Niemiec, M., Szeląg-Sikora, A., Gródek-Szostak, Z., Kuboń, M., & Komorowska, M. (2020). The Impact of a Controlled-Release Fertilizer on Greenhouse Gas Emissions and the Efficiency of the Production of Chinese Cabbage. Energies, 13(8), 2063. https://doi.org/10.3390/en13082063

Singha, C., Swain, K. C., & Swain, S. K. (2020). Best crop rotation selection with GIS-AHP technique using soil nutrient variability. Agriculture, 10(6), 213. https://doi.org/10.3390/agriculture10060213

Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79(1), 7-31. https://doi.org/10.1016/j.still.2004.03.008

Smith, P., Clark, H., Dong, H., Elsiddig, E. A., Haberl, H., Harper, R., ... & Tubiello, F. (2014). Agriculture, forestry and other land use (AFOLU). The Intergovernmental Panel on Climate Change. Retrieved from http://www.ipcc.ch/pdf/assessment-report/ar5/wg3/i

Tan, Q., Farquharson, B., Chen, D., & Liu, J. (2014). An analysis of factors influencing the output value of unit sown area based on grey incidence analysis. Grey Systems: Theory and Application, 4(1), 56–71. https://doi.org/10.1108/GS-09-2012-0032

Tian, Y., Zhang, J., & Li, B. (2011). Research on spatial-temporal characteristics and factor decomposition of agricultural carbon emission based on input angle-taking Hubei Province for example. Research of Agricultural Modernization, 32(6), 752-755.

Tongwane, M. I., & Moeletsi, M. E. (2018). A review of greenhouse gas emissions from the agriculture sector in Africa. Agricultural Systems, 166, 124-134. https://doi.org/10.1016/j.agsy.2018.08.011

Uppala, S., Chapala, M. M., Kumar, K. V. K., Pavuluri, K., & Chandra, K. J. (2016). Climate Change, Carbon Offsets and Low Carbon Technologies in Agriculture: A Review. International Journal of Horticulture & Agriculture, 2(1),1-8. https://doi.org/10.15226/2572-3154/2/1/00106

Ussiri, D. A., & Lal, R. (2009). Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil and Tillage Research, 104(1), 39-47. https://doi.org/10.1016/j.still.2008.11.008

Valani, G. P., Martíni, A. F., da Silva, L. F. S., Bovi, R. C., & Cooper, M. (2021). Soil quality assessments in integrated crop–livestock–forest systems: A review. Soil Use and Management, 37(1), 22-36. https://doi.org/10.1111/sum.12667

Valbuena, D., Erenstein, O., Tui, S. H. K., Abdoulaye, T., Claessens, L., Duncan, A. J., ... & van Wijk, M. T. (2012). Conservation Agriculture in mixed crop–livestock systems: Scoping crop residue trade-offs in Sub-Saharan Africa and South Asia. Field Crops Research, 132, 175-184. https://doi.org/10.1016/j.fcr.2012.02.022

Vanlauwe, B., Descheemaeker, K., Giller, K. E., Huising, J., Merckx, R., Nziguheba, G., ... & Zingore, S. (2015). Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation. Soil, 1(1), 491-508. https://doi.org/10.5194/soil-1-491-2015

Vetter, S. H., Sapkota, T. B., Hillier, J., Stirling, C. M., Macdiarmid, J. I., Aleksandrowicz, L., ... & Smith, P. (2017). Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation. Agriculture, Ecosystems & Environment, 237, 234-241. https://doi.org/10.1016/j.agee.2016.12.024

Vinholis, M. D. M. B., Saes, M. S. M., Carrer, M. J., & de Souza Filho, H. M. (2020). The effect of meso-institutions on adoption of sustainable agricultural technology: A case study of the Brazilian Low Carbon Agriculture Plan. Journal of Cleaner Production, 280, 124334. https://doi.org/10.1016/j.jclepro.2020.124334

Waldron, A., Garrity, D., Malhi, Y., Girardin, C., Miller, D. C., & Seddon, N. (2017). Agroforestry can enhance food security while meeting other sustainable development goals. Tropical Conservation Science, 10, 1940082917720667. https://doi.org/10.1177/1940082917720667

Wang, B., Song, J., Ren, J., Li, K., & Duan, H. (2019). Selecting sustainable energy conversion technologies for agricultural residues: A fuzzy AHP-VIKOR based prioritization from life cycle perspective. Resources, Conservation and Recycling, 142, 78-87. https://doi.org/10.1016/j.resconrec.2018.11.011

West, T. O., & Marland, G. (2002). A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems & Environment, 91(1-3), 217-232. https://doi.org/10.1016/S0167-8809(01)00233-X

Wheeler, T., & Von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508-513. https://doi.org/10.1126/science.1239402

Xiao, X., Duan, H., & Wen, J. (2020). A novel car-following inertia gray model and its application in forecasting short-term traffic flow. Applied Mathematical Modelling, 87, 546-570. https://doi.org/10.1016/j.apm.2020.06.020

Xie, W, Wu, W., & Liu, C. (2021). An unified framework for fractional grey system models: Memory effects perspective. arXiv. https://arxiv.org/abs/2103.10809v1

Yaekob, T., Tamene, L., Gebrehiwot, S. G., Demissie, S. S., Adimassu, Z., Woldearegay, K., ... & Thorne, P. (2020). Assessing the impacts of different land uses and soil and water conservation interventions on runoff and sediment yield at different scales in the central highlands of Ethiopia. Renewable Agriculture and Food Systems, 1-15. https://doi.org/10.1017/S1742170520000010.

Yu, C., Shao, Y., Wang, K., & Zhang, L. (2019). A group decision making sustainable supplier selection approach using extended TOPSIS under interval-valued Pythagorean fuzzy environment. Expert Systems with Applications, 121, 1-17. https://doi.org/10.1016/j.eswa.2018.12.010

Zhu, B., Yuan, L., & Ye, S. (2019). Examining the multi-timescales of European carbon market with grey relational analysis and empirical mode decomposition. Physica A-Statistical Mechanics and Its Applications, 517, 392–399. https://doi.org/10.1016/j.physa.2018.11.016

.

Downloads

Published

2021-07-28

How to Cite

Islam, S. (2021). Evaluation of Low-Carbon Sustainable Technologies in Agriculture Sector through Grey Ordinal Priority Approach. International Journal of Grey Systems, 1(1), 5–26. https://doi.org/10.52812/ijgs.3

Issue

Section

Articles