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Abstract: An accurate forecast of the area of drought disaster is vitally important for the government to take 

appropriate measures to prevent disaster. In the current study, a new conformable fractional discrete grey model 

is applied to study the trend of the area affected by drought disasters. Firstly, the new model, abbreviated as 

CFDGM(1,1), is proposed with the definitions of the conformable fractional operator and the classical GM(1,1) 

model. Then the recursive expression of the time response function is obtained by the grey basic form, and the 

linear system parameters are confirmed by the linear least squares method. Further, the Salp Swarm Algorithm 

is chosen to determine the optimal conformable fractional order. Finally, the area of drought disaster is studied 

by the new model and others, where the results show the new model has a good performance among these 

models. 
 

Keywords: Drought disaster; grey forecast model; conformable fractional operator; salp swarm algorithm 

 

1. Introduction 

Drought as a natural disaster happens due to climate variability under different climatic 

conditions on all continents and has a disastrous impact on the ecosystems, agricultural production, 

and economic and social conditions. Drought disaster is a serious problem in China, and the causes 

of drought disasters in various parts of China can be roughly summarised into three aspects. The 

first aspect is the precipitation, where the precipitation is lower than average in most places. The 

second aspect is the water resources because of the imbalance of water resources in different 

regions in China. The third aspect is the socio-economic factors such as the increasing water 

consumption in industrial and agricultural production in China in recent years. Due to these factors, 

the drought disasters happened, and the area of the drought disaster was also influenced.  

To study the area of drought disaster, the current study uses the grey forecasting models. The 

grey theory was proposed by professor Deng (1982), and the grey system refers to an incomplete 

information system with partially clear and partially unclear information. The grey predicting theory 

is an important part of the grey system, and it does not require a lot of data for modeling to achieve 
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accurate results. The first-order univariate grey forecasting model GM(1,1) is the core of grey 

forecasting models, where the time response function is derived by its whitening differential 

equation and the system parameters are derived by the grey basic form. To improve the precision 

of the GM(1,1) model, Javed and Cudjoe (2022) considered DGM(1,1,α) model and applied to 

forecast the emissions in four industries sectors of China and India. Gou et al. (2022) proposed a 

new high-performance grey prediction model FDGM(1,1, √𝑘 , r) for wastewater discharge 

prediction. Gao et al. (2022) studied a novel grey Gompertz model FAGGM(1,1) for carbon 

emission forecasting in the American industrial sector. Ma et al. (2020) first proposed a new 

conformable fractional grey model CFGM(1,1), in which the conformable fractional operator is 

used for the pretreatment of raw data. The conformable fractional operator is much easier for 

theoretical analysis and applications than the classical fractional operator. With a series of numerical 

examples, the results demonstrate that the new model is more efficient in non-smooth time series 

prediction and longer-term forecasting than the classical fractional grey model FGM(1,1) proposed 

by Wu et al. (2013). Subsequently, Wu et al. (2020) studied a conformable fractional non-

homogeneous grey model and used it to forecast the carbon dioxide emissions of BRICS countries. 

The results obtained by the newly constructed model are compared with the models NGM(1,1,k,c), 

NGMO(1,1,k,c), FGM(1,1), FANGM(1,1,k,c) and showed that the model CFNGM(1,1,k,c) out-

performed others in terms of forecast accuracy.  

Xie et al. (2020a) proposed a continuous conformable fractional grey model CCFGM(1,1) with 

the definition of conformable fractional derivative and then applied it to the domestic energy 

consumption of China and the domestic coal consumption of China. Xie et al. (2020b) studied the 

annual electricity consumption of China by a CFGOM(1,1) with the opposite direction. Zheng et 

al. (2021) proposed a conformable fractional non-homogeneous grey Bernoulli model to study 

natural gas production and consumption. Liu et al. (2021) considered Jiangsu's electricity 

consumption with two types of conformable fractional grey interval models. Due to the 

conformable fractional operator being simple and easy to implement, there have been considerable 

pieces of literature on conformable fractional grey models during the last two years, see Wu et al. 

(2022a; 2022b; 2019), Xie et al. (2021; 2020c), and Xu et al. (2020). These works enriched and 

improved the conformable fraction grey models in theory and applications.  

In the CFGM(1,1) model (Ma et al., 2020), the time response function is obtained by solving the 

whitening differential equation, and the linear system parameters are derived by the grey basic form. 

However, the whitening differential equation and the grey basic form of the CFGM(1,1) model are 

inconsistent because the background values are deduced with the help of the trapezoidal 

approximation formula. This treatment may cause large errors in some applications. Therefore, 

inspired by the above research work, this study introduces the conformable fractional accumulation 

and difference into the classical univariate discrete grey model to construct a new grey model called 

CFDGM(1,1) and then applies it to the area of drought disaster.  

    The rest of this paper is organised as follows. The next section systematically studies the 

CFDGM(1,1) model. We first give the definition of the conformable fractional accumulation and 

difference and then give the definition of the new model. With the theory of the ordinary 

differential equations, the least squares estimation method, and the salp swarm algorithm, the 

expressions of the time response function and system parameters are determined. Section 3 studies 

the area of drought disaster in China. Conclusions are drawn in the last section. 

2. The conformable fractional discrete grey model 

The definition of the conformable fractional operator, and the properties of the proposed 

models are discussed in this section. 

2.1 The conformable fractional operator 

This subsection introduces the definition of the conformable fractional operator, including the 

conformable fractional accumulation and conformable fractional difference. 
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DEFINITION 1 (Wu et al., 2020). The expression of the conformable fractional accumulation 

is given by 
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DEFINITION 2 (Wu et al., 2020). The expression of the conformable fractional difference is 

given by 
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DEFINITION 3 (Ma et al., 2020). Let sequence be 
              0 0 0 0
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th conformable fractional accumulation (-CFA) sequence is 
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2.2 The CFDGM (1, 1) model 

DEFINITION 4. With the classical grey prediction model GM (1,1) and the conformable 

fractional accumulation, the whitening differential equation of the new model is 

       1 2

dx t
b x t b

dt




  , (5) 

where b1 is the development coefficient, b2 is the grey action quantity, and  is the conformable 

fractional order accumulation.  

Integrating both sides of the whitening differential Eq. (5) on the interval [k-1, k], it can calculate 

that 

       1 2
1 1 1

k k k

k k k
dx t b x t dt b dt

 

  
    . (6) 

Solving Eq. (6) with the trapezoidal approximation formula, it can be simplified that 
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which is the grey basic form of the whitening differential equation. And then, we will deduce the 

expression of the model with Eq. (9), which is called conformable fractional discrete grey model 

CFDGM(1,1).  

 

THEOREM 1. The recursive formula of the time response function of the CFDGM(1,1) model 

is 
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PROOF 1. It follows from the grey basic form of the CFDGM(1,1) model that 
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then we add these equations together to produce the following results 
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and then we complete this proof by the conformable fractional operator.  

It can be seen that the system parameters b1 and b2 in Eqs. (10) and (11) are unknown and needs 

to be determined. Thus the following theorem gives the expression of system linear parameters b1 

and b2.  

 

THEOREM 2. The system linear parameters b1 and b2 of the CFDGM (1, 1) model can be 

expressed as follows. 
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where the matrices B and Y are  
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PROOF 2. Integrating the whitening differential Eq. (5) and organising it, we obtain 
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Applying the trapezoid approximation formula
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It is easily to achieve that 
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Considering 2,3, ,k r in the above equation, and writing them in matrix form, it arrives 

that 
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and then the expression of system linear parameters of the new model is computed by  
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2.3 The Salp Swarm Algorithm for optimal conformable fractional order 

This subsection outlines the details of the search process for the optimal conformable fractional 

order . At first, some measures are provided to show the feasibility and accuracy of grey 

forecasting models: the absolute percentage error (APE) and the mean absolute percentage error 

(MAPE). The mathematical formulas of them are produced below. 
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It can be seen from the above analysis that the values of parameters b1 and b2 can be calculated 

by the least squares estimation method, and the remaining task is to find the value of the 

conformable fractional order. Thus an optimisation problem where  is a decision variable is 

constructed, where the corresponding objective function is given below. 
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. 

It is known that it's an arduous task to derive the closed-form expression of the optimal 

conformable fractional order because this optimisation problem is highly nonlinear and complex. 

Therefore, the nature-inspired algorithm called Salp Swarm Algorithm (SSA) (Mirjalili et al., 2017) 

is adapted to numerically find . This algorithm is a new type of bionic swarm intelligence 
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algorithm. The algorithm has some advantages, such as fewer adjustment parameters, easy-to-

understand concepts, less difficulty in programming, and good directionality in optimisation. The 

pseudo-code of the Salp Swarm Algorithm is presented below. 

Initialise the salp population xi(i=1,2,…,n) considering upper bound ub and lower bound lb of . 
While (end condition is not satisfied) 
Calculate the fitness of each search agent (salp) 
F=the best search agent 

Update 1c by 

2
4

1 2

l

Lc e

 
 
   

for each salp ( ix ) 

if  1i   

Update the position of the leading salp by 

  

  

1 2 3
1

1 2 3

0

0

j j j j

j

j j j j

F c ub lb c lb c
x

F c ub lb c lb c

    


 
   



 

else 

Update the position of the follower salp by  11

2 j

i i i

j jx x x    

end 
end 

Amend the salps based on the upper and lower bounds of variables 
end 
return F 

3. Applications 

This application section discusses the area of drought disaster in China by different grey 

forecasting models, including the DGM(1,1), FDGM(1,1) and CFDGM(1,1) models. The raw data 

of the area of drought disaster of China are all collected from the website of the National Bureau 

of Statistics (https://data.stats.gov.cn/easyquery.htm?cn=C01) and is presented in Table 1. These data 

are divided into two parts, the first part from the year 2010 to 2016 is used for modelling, and the 

second part from 2017 to 2019 is used for out-of-sample testing. 

It is known that the whole modelling process can be established when system parameters b1, b2 

and  are determined. Here the detailed modeling process of the CFDGM(1,1) model is shown. 

According to Table 1, the raw data on the area of drought disaster in China is 

X(0)=(13258.6, 16304.2, 9339.8, 1410.4, 12271.7, 10609.7, 9872.7, 9874.8, 7711.8, 7838.0). 

Firstly, according to the Salp Swarm Algorithm and the raw data of the year from 2010 to 2016, 

we obtain the system nonlinear parameter  = 0.9188. Then on the base of Theorem 2, the values 

of B and Y can be given as follows. 
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32942.3244 1
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Table 1. The raw data of the area of drought disaster of China (thousand hectares) 

Year 2010 2011 2012 2013 2014 

Data 13258.6 16304.2 9339.8 14100.4 12271.7 

Year 2015 2016 2017 2018 2019 

Data 10609.7 9872.7 9874.8 7711.8 7838.0 

It follows from formula      
1

1 2,
T T Tb b B B B Y



  that b1=0.0944, b2=15413.6863. And 

then the expression of grey model CFDGM(1,1) can be written as 

       1 10.9098 1 163207.9470 1 0.9098 , 2,3,k kx k x k
        , 

and the restored values of the CFDGM(1,1) model are easily computed. Actually, the other grey 

forecasting models DGM(1,1) and FDGM(1,1) can also be established. The computational results 

and errors are tabulated in Table 2 and Figure 1, and all results are reported to two decimal places. 

It follows from Table 2 and Figure 1 that the three discrete grey models successfully catch the 

trend of the area of the drought disaster in China. The MAPEsimu, MAPEpred and MAPEall of the 

DGM(1,1) model are 12.54%, 6.87% and 10.65%, those of the FDGM(1,1) model are 12.37%, 

6.19%, 10.31%, and those of the CFDGM(1,1) model are 12.31%, 6.18% and 10.27%, respectively. 

It is seen that the CFDGM(1,1) model obtains better results than the other discrete grey models. 

However, it must be admitted that their accuracy is basically the same, and they are all suitable for 

the area of drought disaster of China. 

To further study the accuracy of the three grey discrete models, we consider the following two 

cases. 

Case 1: The raw data from 2010 to 2015 are used for modelling, and the raw data from 2016 to 

2019 are used for out-of-sample testing (r = 6). 

Case 2: The raw data from 2010 to 2017 are used for modelling, and the raw data from 2018 to 

2019 are used for out-of-sample testing (r = 8). 

The computational results and corresponding errors are listed in Table 3 and Figure 2, and Table 

4 and Figure 3, respectively. 

It follows from Table 3 and Figure 2 that the MAPEsimu, MAPEpred and MAPEall of the 

DGM(1,1) model are 14.85%, 6.39% and 11.09%, those of the FDGM(1,1) model are 13.53%, 

99.93%, 51.93%, and those of the CFDGM(1,1) model are 14.70%, 6.01% and 10.84%, 

respectively. It is obvious that the FDGM(1,1) model is inapplicable in the area of drought disasters 

in China. 

It can be seen in Table 4 and Figure 3 that the MAPEsimu, MAPEpred and MAPEall of the 

DGM(1,1) model are 11.62%, 10.86% and 11.45%, those of the FDGM(1,1) model are 11.04%, 

19.73%, 12.97%, and those of the CFDGM(1,1) model are 11.62%, 10.86% and 11.45%,  

Table 2. The computational results of the DGM(1,1), FDGM(1,1) and CFDGM(1,1) models 

Year Data DGM(1,1) APE FDGM(1,1) APE CFDGM(1,1) APE 

   fractional order=0.9185 fractional order=0.9188 

2010 13258.6 13258.60 0.00 13258.60 0.00 13258.60 0.00 

2011 16304.2 14372.39 11.85 14231.56 12.71 14305.58 12.26 

2012 9339.8 13366.88 43.12 13467.11 44.19 13450.93 44.02 

2013 14100.4 12431.71 11.83 12555.11 10.96 12527.01 11.16 

2014 12271.7 11561.97 5.78 11626.16 5.26 11605.59 5.43 

2015 10609.7 10753.08 1.35 10725.76 1.09 10716.38 1.01 

2016 9872.7 10000.78 1.30 9872.70 0.00 9872.70 0.00 

2017 9874.8 9301.11 5.81 9074.57 8.10 9080.23 8.05 

2018 7711.8 8650.39 12.17 8333.56 8.06 8340.70 8.16 

2019 7838.0 8045.20 2.64 7649.10 2.41 7653.69 2.35 

MAPEsimu 12.54  12.37  12.31 

MAPEpred 6.87  6.19  6.18 

MAPEall 10.65  10.31  10.27 
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Table 3. The computational results of the DGM(1,1), FDGM(1,1) and CFDGM(1,1) models (case 1) 

Year Data DGM(1,1) APE FDGM(1,1) APE CFDGM(1,1) APE 

   fractional order=1.6157 fractional order=0.8579 

2010 13258.6 13258.60 0.00 13258.60 0.00 13258.60 0.00 

2011 16304.2 14326.53 12.13 16304.20 0.00 14299.76 12.29 

2012 9339.8 13361.47 43.06 11324.73 21.25 13520.58 44.76 

2013 14100.4 12461.42 11.62 11114.39 21.18 12571.67 10.84 

2014 12271.7 11622.00 5.29 11760.07 4.17 11582.65 5.62 

2015 10609.7 10839.12 2.16 12842.73 21.05 10609.70 0.00 

2016 9872.7 10108.98 2.39 14256.47 44.40 9679.65 1.96 

2017 9874.8 9428.02 4.52 15976.41 61.79 8805.30 10.83 

2018 7711.8 8792.94 14.02 18009.50 133.53 7992.02 3.63 

2019 7838.0 8200.63 4.63 20379.47 160.01 7241.06 7.62 

MAPEsimu 14.85  13.53  14.70 

MAPEpred 6.39  99.93  6.01 

MAPEall 11.09  51.93  10.84 

Table 4. The computational results of the DGM(1,1), FDGM(1,1) and CFDGM(1,1) models (case 2) 

Year Data DGM(1,1) APE FDGM(1,1) APE CFDGM(1,1) APE 

   fractional order=1.1497 fractional order=1.0000 

2010 13258.6 13258.60 0.00 13258.60 0.00 13258.60 0.00 

2011 16304.2 14268.10 12.49 14767.29 9.43 14268.10 12.49 

2012 9339.8 13339.12 42.82 13109.57 40.36 13339.12 42.82 

2013 14100.4 12470.63 11.56 12124.66 14.01 12470.63 11.56 

2014 12271.7 11658.68 5.00 11397.32 7.13 11658.68 5.00 

2015 10609.7 10899.60 2.73 10809.91 1.89 10899.60 2.73 

2016 9872.7 10189.94 3.21 10311.38 4.44 10189.94 3.21 

2017 9874.8 9526.48 3.53 9874.80 0.00 9526.48 3.53 

2018 7711.8 8906.22 15.49 9484.17 22.98 8906.22 15.49 

2019 7838.0 8326.35 6.23 9129.22 16.47 8326.35 6.23 

MAPEsimu 11.62  11.04  11.62 

MAPEpred 10.86  19.73  10.86 

MAPEall 11.45  12.97  11.45 

 

respectively. These results show the FDGM(1,1) model is also inapplicable in the area of drought 

disasters in China. Moreover, we can see the optimal conformable fractional order of the 

CFDGM(1,1) model  = 1.0000, and then it reduces to the classical DGM(1,1) model and has the 

same results in this case. It can also conclude that the CFDGM(1,1) model is suitable for the area 

of drought disasters in China. 

4. Conclusion 

In the current study, the area of China affected by the drought disaster is studied by using three 

discrete grey models, namely, the DGM(1,1) model, the FDGM(1,1) model, and the CFDGM(1,1) 

model. The optimal conformable fractional order is determined by the salp swarm algorithm. And 

we considered three different cases to study the accuracy of different grey models. The 

computational results show that the CFDGM(1,1) model performs better than the other discrete 

grey models, where the mean absolute prediction error MAPEpred in the three cases are 6.18%, 

6.01%, and 10.86%, respectively. Moreover, it can be seen from Tables 2 – 4 and Figures 1 – 3 that 

the fractional order of the FDGM(1,1) model ranges from 0.9185 to 1.6157, and the conformable 

fractional order of the CFDGM(1,1) model ranges from 0.8579 to 1.0000. This means the 

CFDGM(1,1) model needs a narrower range of conformable fractional order and obtains higher 

accuracy results than the FDGM(1,1) in China's drought disaster. 
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Fig 1. Results among the DGM(1,1), FDGM(1,1) and CFDGM(1,1) models 

  

Fig 2. Results among the DGM(1,1), FDGM(1,1) and CFDGM(1,1) models (case 1) 

  

Fig 3. Results among the DGM(1,1), FDGM(1,1) and CFDGM(1,1) models (case 2) 

 

Actually, the accuracy of the CFDGM(1,1) model has much room for improvement owing to 

the best MAPEpred is 6.01% in the area of drought disaster in China. On the one hand, the raw data 

of China's drought disaster exhibits considerable variation, while the CFDGM(1,1) model is a linear 

model and cannot depict the data's fluctuation features. On the other hand, it is infeasible to 

consider other factors, such as population, and meteorological, which affect the current situation 

of China's drought disaster in the newly proposed model owing to the CFDGM(1,1) model is 

univariate. In the future, some nonlinear grey forecasting models or multivariate grey forecasting 

models with conformable fractional order can be considered and applied to the area of drought 

disaster in China.  
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Abstract: Singular optimization of engine conditions for better engine performance have been studied 

extensively. However, in the practical sense, more than one performance characteristics are essential in the 

optimization of engine conditions. The current study investigates the effect, optimization, and modeling of 

engine conditions on multi-characteristics of a single cylinder-dual direct injection-water cooled diesel engine 

with the help of Taguchi-grey relational and regression analyses. The engine conditions employed are engine 

load, hydrogen, multi-walled carbon nanotubes (MWCNTs), ignition pressure, and ignition timing, at four 

different levels. The engine performance characteristics analyzed were brake thermal efficiency (BTE), brake 

specific fuel consumption (BSFC), hydrocarbons (HC), nitrogen oxide (NOx), carbon monoxide (CO), and 

carbon dioxide (CO2). The results showed that there was a similar behavioral pattern of the effect of engine 

conditions on engine performance, except for ignition timing. The optimal settings for better engine 

performance were obtained at 25% engine load, 20% hydrogen, 50 ppm MWCNTs, 220 bar ignition pressure, 

and 21 obTDC ignition timing. Interestingly, the discovered optimal did not fall within the considered 

experimental runs, however, the predicted optimal engine performance was within 95% confidence bounds. It 

is recommended that the experimental work based on the obtained optimal settings should be conducted to 

elucidate the efficacy of the confirmation analysis. The analysis of variance showed that the engine load was the 

most significant factor on the overall engine performance, having a contribution of 71.47%, followed by 

hydrogen and MWCNTs. Also, the ignition pressure and timing were not significant on the overall engine 

performance, which showed a need to place more attention on the significant factors for better engine 

performance. The mathematical and graphical modeling showed the efficacy of the design analysis, while the 

interaction plots showed broader detailed factor settings for better engine performance. 
 

Keywords: Grey relational optimization; diesel engine; brake thermal efficiency; fuel consumption; emissions 

 

1. Introduction 

In ongoing many years, all-out overall energy utilization has been expanded essentially. It 

prompts unnatural weather change and brings about higher temperatures on the earth (Masoudi & 
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Zaccour, 2017) and undermines energy security (Wallington et al., 2013). This effect is detrimental 

to human well-being and the ecosystem (Lin et al., 2011; Arbab et al., 2013). A lot of researches 

have shown that fossil fuels contribute significantly to ozone layer depletion (Oparanti et al., 2022). 

The pace of energy utilization has been reported by International Energy Organization (IEA) to 

reach about 53% by 2030 (Taufiqurrahmi & Bhatia, 2011). Meaning, the adverse effect of the 

utilization of fossil fuels on ozone layers depletion by 2030 is likely to be unbearable. Several pieces 

of research have been conducted on the several ways to mitigate these challenges. Abu-Jrai et al. 

(2009) researched the likelihood of improving performance efficiency and reducing combustion 

emissions of a single-cylinder-direct injection-diesel engine. In their work, simulated reformer 

product gas was added to a typical ultra-low Sulphur diesel (ULSD) and a replacement ultra-clean 

synthetic GTL (gas-to-liquid) fuel to research engine performance, combustion, and emissions at 

different operating conditions. They concluded that an optimal combination of GTL and simulated 

reformer product gas significantly improved both NOx and smoke emissions. Ren et al. (2008) 

investigated combustion and emissions of a diesel direct engine injection (DI) powered by diesel-

oxygenate blends. They observed that there was a discount in smoke concentration no matter the 

kinds of oxygenating additives, however, the smoke reduced when oxygen mass fraction within the 

blends was increased without increasing the NOx and engine thermal efficiency. Conversely, it had 

been noticed that CO and HC concentrations reduced with a rise in oxygen mass fraction within 

the blends. Li et al. (2015) fueled an immediate injection diesel with pentanol to research the 

combustion and emissions of the compression ignition of the engine. It had been discovered that 

NOx and soot emissions were significantly reduced for pentanol with comparable efficiencies 

under one injection strategy without exhaust gas recirculation (EGR). It had been also observed 

that the employed pentanol fuel offered obvious characteristics to realize a smoother heat release 

rate with reduced peak pressure-rise rate in contrast to the diesel oil. Prabhu and Ramanan (2020) 

studied the effect of emission and performance characteristics in an unmodified diesel powered by 

pentanol-diesel mixtures at different ratios. They found that pentanol acted as a catalyst (oxidizing) 

thereby reducing the carbon monoxide gas and hydrocarbon emissions. It had been also discovered 

that there was a substantial reduction in NOx emission and also a discount in fuel consumption 

which increased the brake thermal efficiency of the engine. Kalam et al. (2011) investigated the 

emissions and performance characteristics of an indirect ignition diesel fueled with a waste 

vegetable oil. They found that there was a discount in brake power compared with ordinary diesel 

oil. However, a discount in exhaust emissions like unburned hydrocarbon (HC), smoke, carbon 

mono-oxide (CO), and nitrogen oxides (NOx) was generated by the blended fuels. 

Furthermore, many studies are conducted on the optimization of input parameters on the 

emissions and performance efficiency of diesel engines. Sivaramakrishnan and Ravikumar (2014) 

optimized some operation parameters on the performance and emissions of a diesel fueled with 

biodiesel. It had been found that a compression ratio of 17.9, 10 you look after fuel blend, and 3.81 

kW of power were the optimum parameters for the test engine. Leung et al. (2006) optimized engine 

parameters namely; injection pressure, injection timing, and fuel pump plunger diameter. Their 

findings showed that that individual setting of the engine parameters couldn't cause an honest 

balance between PM and NOx emissions, but multiparameter settings with the consideration of 

their cross-interactive effects could reduce particulate matters and hydrocarbon without increasing 

NOx emission and trading off fuel combustion efficiency. Koten et al. (2014) discovered the 

optimum operating conditions for a diesel when it had been fueled with compressed biogas (CBG) 

and pilot diesel dual-fuel. Their findings showed that there have been significantly lower NOx 

emissions emitted under dual-fuel operation for all cases compared to single-fuel mode in the least 

engine load conditions. Ramachander et al. (2021) optimized the emission and combustion 

characteristics of diesel engines operating under the reactivity-controlled compression ignition 

mode. The operating parameters investigated were fuel injection system timings, injection pressure, 

and variable engine load, using Box-Behnken-based response surface methodology. Manigandan et 

al. (2020) administered optimization on the engine conditions of one cylinder-dual direct injection-

water cooled diesel fueled under hydrogen, multiwall carbon nanotubes (MWCNTs), ignition 
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pressure, and ignition timing. Their findings reflected that there's an improvement in brake power 

by 13% and a discount in brake-specific fuel consumption by 8% at full engine load conditions. It 

had been also added in their findings that there was a big emission reduction. 

Taguchi design of experiment (DOE) has to do with the reduction of robust laboratory work or 

experiment to determine the effect of processing parameters or variables on the response of a 

system, product, or process (Taguchi & Phadke, 1989; Taguchi et al., 2000; Taguchi et al., 2005). 

However, Taguchi is only capable of optimizing a singular response of a process, product, or 

system. However, the Taguchi DOE method with the assistance of grey relational analysis (GRA) 

can optimize multiple responses. In other words, when there is a complex situation or uncertainty, 

like in the case of a need to optimize more than one characteristic of a system, product, or process, 

GRA can be employed to simplify the situation for possible optimization (Julong 1989; Javed et al., 

2019). GRA is employed to convert multiple response characteristics into a singular response 

understood by the Taguchi DOE technique.  GRA has been explored in several applications in the 

past studies. Tosun (2006) employed GRA for the optimization of multi-responses in drilling 

operations. Hamzaçebi and Pekkaya (2011) determined stock investments using GRA. Li et al. 

(2019) employed GRA in combination with the incremental capacity analysis technique in the 

application of accurate battery state-of-health (SOH) monitoring for the safe and reliable operation 

of electric vehicles. Wu et al. (2020) incorporated TRIZ, AD, fuzzy, and GRA design as a novel 

design approach in the designing and manufacturing of a product. Senthilkumar et al. (2021) 

blended and optimized a transformer oil with vegetable oil using the Taguchi-GRA technique. This 

review shows that GRA has applications in invariably all areas of endeavors.  

Having discussed the state of the art of the subject matter, it is important to state that several 

studies have considered the optimization of engine conditions for better engine performance and 

reduced emissions. These studies mostly considered the optimization of singular performance 

characteristics, which is an actual sense, there is a need to consider optimization of engine 

conditions for all the important performance characteristics of an engine, such as engine 

conditions, fuel blends, etc. This will lead to efficient optimization. Multiple performance 

characteristics optimization is complicated because all the design of experiment (DOE) techniques 

can optimize singular performance characteristics of a system, process, or product. Due to this 

challenge, Manigandan et al. (2020) evaluated all the multiple performance characteristics of a diesel 

engine using the Taguchi DOE technique. They optimized those characteristics individually, which 

is somewhat not good enough for efficient optimization (Ofodu & Abifarin, 2022). Hence, this 

study identified the gap by employing grey relational analysis (GRA) to assist the Taguchi DOE 

technique for multiple performance characteristics of a single cylinder-dual direct injection-water 

cooled diesel engine. GRA technique is employed to assist the Taguchi design technique because 

the engine performance conditions were complex to optimize due to incomplete and uncertain 

information present in this study. GRA has been proven to mitigate this very challenge (Javed 2019; 

Javed et al., 2019; Abifarin, 2021; Abifarin et al., 2022a). 

2. Research design and methodology 

2.1 Experimental data curation and research design 

This study followed the study of Manigandan et al. (2020). The experimental data was obtained 

from their work for analysis. Tables 1, 2, and 3 show the experimental factors considered, the 

experimental runs, and the corresponding data, respectively for the analysis in this study. The 

Taguchi design and modeling were done using Minitab 16 software, while interaction plots and 

other plots were done using Origin 19 software. 

2.2 Research methodology and data analysis 

Grey relational analysis was conducted on the experimental data presented in Table 3. The data 

was first normalized using grey relational generation. The break thermal efficiency (BTE) was 

normalized using the higher-the-better normalization condition, as giving in Equation 1.  
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Table 1. Experimental factors and levels 

Factors 
Engine 

load (%) 
Hydrogen 

(%) 
MWCNTs 

(ppm) 
Ignition 

pressure (bar) 
Ignition timing 

(obTDC) 

Factors 
symbols 

A B C D E 

Level 1 25 0 0 180 21 

Level 2 50 10 30 200 23 

Level 3 75 20 50 220 27 

Level 4 100 30 80 240 31 
 

Table 2. Experimental runs 

Exp. 
runs 

Engine load 
(%) 

Hydrogen 
(%) 

MWCNTs 
(ppm) 

Ignition pressure 
(bar) 

Ignition timing 
(obTDC) 

1 25 0 0 180 21 

2 25 10 30 200 23 

3 25 20 50 220 27 

4 25 30 80 240 31 

5 50 0 30 220 31 

6 50 10 0 240 27 

7 50 20 80 180 23 

8 50 30 50 200 21 

9 75 0 50 240 23 

10 75 10 80 220 21 

11 75 20 0 200 31 

12 75 30 30 180 27 

13 100 0 80 200 27 

14 100 10 50 180 31 

15 100 20 30 240 21 

16 100 30 0 220 23 
 

Table 3. Experimental multiple responses of the tested diesel engine 

Exp. runs BTE BSFC HC NOx CO CO2 

1 32.65 755 8.65 120 0.09 2.61 

2 33.88 735 8.5 112 0.08 2.55 

3 37.3 708 8 108 0.05 2.1 

4 35.25 715 8.25 105 0.06 2.32 

5 33.95 662 10.8 210 0.128 4.05 

6 32.15 625 10.2 235 0.125 3.95 

7 34.35 539 9.4 210 0.12 3.8 

8 36.98 468 9.2 198 0.1 3.52 

9 33.55 490 13.05 265 0.135 5.52 

10 35.12 452 12.19 265 0.149 4.32 

11 33.84 485 11.95 280 0.14 4.25 

12 34.5 435 11.25 242 0.132 4.15 

13 33.56 375 14.68 365 0.158 7.25 

14 34.1 355 13.72 315 0.155 6.75 

15 35.95 348 12.68 298 0.145 4.45 

16 35.05 368 15.66 338 0.151 6.2 

 

The reason for the higher-the-better normalization is that break thermal efficiency is required as 

high as possible. Then, the rest of the data, namely; break specific fuel consumption (BSFC), 

hydrocarbons (HC), nitrogen oxide (NOx), carbon monoxide (CO), and carbon dioxide (CO2) 

were normalized using the smaller-the-better normalization condition, as shown in Equation 2. 

The smaller-the-better normalization condition was chosen because we require those 

characteristics as low as possible. A comparison was done with an ideal sequence, 𝑥𝑜(𝑘) (𝑘 = 1, 

2,…,16) for the six performance characteristics. 
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𝑥𝑖(𝑘) =
𝑦𝑖(𝑘) − min 𝑦𝑖(𝑘)

𝑚𝑎𝑥 𝑦𝑖(𝑘) − min 𝑦𝑖(𝑘)
 (1) 

𝑥𝑖(𝑘) =
max 𝑦𝑖(𝑘) − 𝑦𝑖(𝑘)

𝑚𝑎𝑥 𝑦𝑖(𝑘) − min 𝑦𝑖(𝑘)
 (2) 

𝑥𝑖(𝑘) is the data being preprocessed for the ith experiment, and 𝑦𝑖(𝑘) is the initial sequence of the 

mean of the responses. The deviation sequence (Equation 3) was subsequently calculated to enable 

the determination of grey relational coefficient (GRC). The grey relational generation and the 

deviation sequence of the six experimental data are shown in Table 4. 

Δ𝑜𝑖(𝑘) = |𝑥𝑜(𝑘) − 𝑥𝑖(𝑘)| (3) 

where Δ𝑜𝑖(𝑘) , 𝑥𝑜(𝑘) , and 𝑥𝑖(𝑘)  are the deviation, reference sequence, and normalized data, 

respectively. The GRC values were calculated using Equation 4. The GRC values show the 

relationship between the expected and obtained experimental data. 

𝜉𝑖(𝑘) =
Δ𝑚𝑖𝑛 + 𝜁Δ𝑚𝑎𝑥

Δ𝑜𝑖(𝑘) + 𝜁Δ𝑚𝑎𝑥

 (4) 

where 𝜉𝑖(𝑘) is the GRC value of the individual experimental data, computed as a function of Δmin 

and Δmax, the minimum and the maximum deviations of each experimental data. 𝜁  is the 

distinguishing coefficient, whose value is widely assumed to be 0.5 (Mahmoudi et al., 2020; Abifarin 

et al., 2021a). 

Lastly, the grey relational grade (GRG) was calculated using Equation 5. The GRC, GRG, and 

signal to noise (S/N) ratios are displayed in Table 5. The GRG (the converted singular response) 

gives the overall multiple performance characteristics for the six experimental data, which made it 

possible for Taguchi DOE technique to analyze. As always require in GRA Optimization, the 

higher-the-better signal to noise ratio is considered for the Taguchi DOE analysis (Taguchi & 

Phadke, 1989; Taguchi et al., 2000; Taguchi et al., 2005; Abifarin, 2021; Abifarin et al., 2021b; 

Abifarin et al., 2022b; Awodi et al., 2021). 

𝛾𝑖 =
1

𝑛
∑ 𝜉𝑖(𝑘)

𝑛

𝑖=1

 (5) 

𝛾𝑖  is the GRG value obtained for the ith experiment and n is the number of performance 

characteristics.  

Table 4. Grey relational generation and deviation sequence 

 Generation Deviation sequence 

BTE BSFC HC NOx CO CO2 BTE BSFC HC NOx CO CO2 

1 0.097 0 0.915 0.942 0.630 0.901 0.903 1 0.085 0.058 0.370 0.099 

2 0.336 0.049 0.935 0.973 0.722 0.913 0.664 0.951 0.0653 0.027 0.278 0.087 

3 1 0.116 1 0.989 1 1 0 0.885 0 0.012 0 0 

4 0.602 0.098 0.967 1 0.907 0.957 0.398 0.902 0.033 0 0.093 0.043 

5 0.350 0.229 0.635 0.596 0.278 0.621 0.651 0.772 0.366 0.404 0.722 0.379 

6 0 0.319 0.713 0.5 0.306 0.641 1 0.681 0.287 0.5 0.694 0.359 

7 0.427 0.531 0.817 0.596 0.352 0.670 0.573 0.469 0.183 0.404 0.648 0.330 

8 0.938 0.705 0.843 0.642 0.537 0.724 0.062 0.295 0.157 0.358 0.463 0.276 

9 0.272 0.651 0.341 0.385 0.213 0.336 0.728 0.349 0.659 0.615 0.787 0.664 

10 0.577 0.745 0.453 0.385 0.083 0.569 0.423 0.256 0.547 0.615 0.917 0.431 

11 0.328 0.663 0.484 0.327 0.167 0.582 0.672 0.337 0.516 0.673 0.833 0.418 

12 0.456 0.786 0.576 0.473 0.241 0.602 0.544 0.214 0.424 0.527 0.759 0.398 

13 0.274 0.934 0.128 0 0 0 0.726 0.066 0.872 1 1 1 

14 0.379 0.983 0.253 0.192 0.028 0.097 0.621 0.017 0.747 0.808 0.972 0.903 

15 0.738 1 0.389 0.258 0.120 0.544 0.262 0 0.611 0.742 0.880 0.456 

16 0.563 0.951 0 0.104 0.065 0.204 0.437 0.049 1 0.896 0.935 0.796 
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Table 5. Grey relational coefficient (GRC), grey relational grade (GRG) and S/N ratio 

Exp. Runs 
GRC 

GRG S/N ratio 
BTE BSFC HC NOx CO CO2 

1 0.356 0.333 0.855 0.897 0.575 0.835 0.642 -3.853 

2 0.430 0.345 0.885 0.949 0.643 0.851 0.684 -3.304 

3 1 0.361 1 0.977 1 1 0.890 -1.015 

4 0.557 0.357 0.939 1 0.844 0.921 0.770 -2.275 

5 0.435 0.393 0.578 0.553 0.409 0.569 0.490 -6.205 

6 0.333 0.424 0.635 0.5 0.419 0.582 0.482 -6.338 

7 0.466 0.516 0.732 0.553 0.436 0.602 0.551 -5.179 

8 0.890 0.629 0.761 0.583 0.519 0.645 0.671 -3.464 

9 0.407 0.589 0.431 0.448 0.389 0.430 0.449 -6.956 

10 0.542 0.662 0.478 0.448 0.353 0.537 0.503 -5.965 

11 0.427 0.598 0.492 0.426 0.375 0.545 0.477 -6.427 

12 0.479 0.701 0.541 0.487 0.397 0.557 0.527 -5.566 

13 0.408 0.883 0.364 0.333 0.333 0.333 0.443 -7.082 

14 0.446 0.967 0.401 0.382 0.340 0.356 0.482 -6.339 

15 0.656 1 0.450 0.403 0.362 0.523 0.566 -4.949 

16 0.534 0.911 0.333 0.358 0.348 0.386 0.478 -6.406 

3. Results and discussion 

3.1 Effect and optimization of control factors on the engine multiple performance characteristics (GRG) 

The effect of control factors on the multiple performance characteristics (GRG) of the diesel 

engine has been illustrated in Figure 1. The results showed that there GRG value decreased with 

an increase in engine load, while there was an increase in GRG when hydrogen was increased to 

20% before it dropped slightly at 30%. Similar to the effect of hydrogen on the GRG value, 

MWCNTs and ignition pressure, an increase in GRG value was noticed up to level 3, but dropped 

at level 4. But for ignition timing factor, there the value of GRG was inconsistent with the increase 

in ignition timing. In conclusion, the figure shows the optimal settings of those factors for better 

performance of the tested engine, which are 25% engine load, 20% hydrogen, 50 ppm MWCNTs, 

220 bar ignition pressure, and 21 obTDC ignition timing. 
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Fig 1. Effect of control factors on multiple performance characteristics 
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3.2 Significance of control factors on multiple performance of the diesel engine 

The variance analysis (ANOVA) of the engine performance is shown in Table 6. It displays the 

effect and weight of each factor on the resultant performance. It is found that engine load is the 

most significant factor, showing a contribution of 71.47%, followed by hydrogen (15.36%), and 

MWCNTs (8.66%). The other two factors reflected a very little contribution of ignition pressure 

and timing. Thus, much attention should be placed on the significantly influenced factors to 

achieve better engine performance efficiency. 

3.3 Confirmation analysis 

If 𝛾0  is the highest engine performance efficiency at optimal settings and 𝛾𝑚  is the average  

engine performance efficiency, while 𝑞  is the number of the factors, then the predicted grey 

relational grade (engine performance efficiency) is 

𝛾𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝛾𝑚 + ∑ 𝛾0 − 𝛾𝑚

𝑞

𝑖=1

 (6) 

The predicted engine performance efficiency at optimal settings was known to be 0.8997, and 

thus confidence interval (CI) was obtained using probability distribution analysis of the various 

GRG values to check perhaps all the experimental GRG values and the predicted optimal GRG 

value are within 95% confidence bounds. The confidence bounds and the experimental GRG value 

(engine performance) are displayed in Figure 2. The graph shows the possibility that the predicted 

Table 6. ANOVA for engine performance 

Factors 
Degree of 

Freedom (DF) 
Adj SS Adj MS 

Contribution 
(%) 

Remark 

Engine load (%) 3 0.17646 0.05882 71.47 
Most 

significant 

Hydrogen (%) 3 0.03792 0.01264 15.36 Significant 

MWCNTs (ppm) 3 0.02138 0.00713 8.66 Significant 

Ignition pressure (bar) 3 0.00321 0.00107 1.30 Insignificant 

Ignition timing 
(obTDC) 

3 0.00796 0.00265 3.22 Insignificant 

Residual error 0    - 

Total 15 0.24693 0.08231   
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Fig 2. Confidence bounds of the engine performance (GRG) 
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optimal GRG value obtained fall within the 95% confidence bounds. However, further 

experimental work is recommended to be done considering the discovered optimal settings in this 

study. Because the discovered optimal settings were not among the experimental runs considered 

in the initial experimental work. 

3.4 Modeling and interaction of chemical additives and engine parameters on engine performance 

The Equation (7) shows the mathematical modeling of the engine performance (EP), while 

Figure 3 shows the experimental engine performance versus the modeled engine performance. The 

modeling was done using regression analysis with Mintab 16 software. Figure 3 shows that the 

predicted engine performance based on modeling followed the behavioral pattern of the 

experimental. This elucidates the validity of the design and model. 

EP = 0.656 – 0.00329A + 0.00401B + 0.000716C + 0.000351D  – 0.00174E (7) 

 

Figure 4 reflects the interaction plots of various factors on the engine performance. This explains 

the combination of factors settings for various engine performance efficiency. The figure shows 

the detailed combination of all the various factors levels to achieve engine performance as high as 

possible. 

4. Conclusion 

This study has successfully investigated the effect, optimization and modeling of engine 

conditions on multiple performance characteristics of a single cylinder-dual direct injection-water 

 
Fig 3. Experimental versus predicted engine performance 

  
Fig 4. Interaction plots of parameters on engine performance 

 

0 2 4 6 8 10 12 14 16 18

0.4

0.5

0.6

0.7

0.8

0.9

E
n

g
in

e
 p

e
rf

o
rm

a
n

c
e

Experimental runs

 Experimental engine performance

 Predicted engine performance

30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

H
y
d

ro
g

e
n

 (
%

)

Engine load (%)

0.4420

0.4980

0.5540

0.6100

0.6660

0.7220

0.7780

0.8340

0.8900

Engine performance

30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

M
W

C
N

T
s
 (

p
p

m
)

Engine load (%)

0.4420

0.4980

0.5540

0.6100

0.6660

0.7220

0.7780

0.8340

0.8900

Engine performance



International Journal of Grey Systems: Vol. 2, No. 1 Abifarin & Ofodu (2022)  

24 

 

  

  

  

  
Fig 4. Interaction plots of parameters on engine performance (continued) 

cooled diesel engine with the help of Taguchi grey relational and regression analysis. The multiple 

performance characteristics, namely; the break thermal efficiency (BTE), break specific fuel 

consumption (BSFC), hydrocarbons (HC), nitrogen oxide (NOx), carbon monoxide (CO), and 
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carbon dioxide (CO2) converted to a singular response, which made it feasible for Taguchi design 

technique to analyze. The results showed that there was similar behavioral pattern of the effect of 

engine conditions, except for ignition timing. The optimal settings for better engine performance 

were obtained to be 25% engine load, 20% hydrogen, 50 ppm MWCNTs, 220 bar ignition pressure, 

and 21 obTDC ignition timing. The discovered optimal settings for better engine performance did 

not fall within the experimental runs considered in the analysis. Although, confirmation analysis 

showed that there is possibility that the predicted optimal engine performance was within the 

confidence bound, however, there is a need to conduct experimental work based on the gotten 

optimal settings to elucidate the efficacy of the confirmation analysis. The analysis of variance 

(ANOVA) shows that engine load was the most significant factor with a contribution of 71.47%, 

followed by hydrogen and MWCNTs. The analysis revealed that the ignition pressure and timing 

were not significant on the overall engine performance. This shows that much attention is needed 

on the significant factors for better engine performance efficiency. The mathematical and graphical 

modeling of the overall engine performance were presented in this study. The modeling showed 

the efficacy of the design and analysis. Also, the interaction plots showed a broader detail of factor 

settings for better engine performance.  
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Abstract: There is relatively little information on the mechanical behavior and modeling of palm kernel shell 

ash reinforced Al-Mg-Si composite. Thus, this study investigates the mechanical behavior and modeling of Al-

Mg-Si composite. Hardness, impact strength and modulus of rupture (MOR) of the composite were 

investigated and analyzed using Minitab 16 and Origin software. It was found that the mechanical properties 

of the composite are inconsistent with composition variation. The mathematical and graphical modeling of the 

composite mechanical properties of the composite have been presented. The modeling revealed that aside the 

composition, there are other factors responsible for the mechanical behavior of the composite which were not 

considered in the experimental analysis. Validation of the claim was also made with analysis. The study of the 

interaction between the two compositions on the resultant mechanical properties gave some specific 

compositions with better mechanical properties. However, this study strongly recommends conduction of 

further analysis on other important factors responsible for the mechanical response of the composite. 
 

Keywords: Multi-objective optimization; mechanical properties; preferable probability; grey relational analysis; 

Al-Mg-Si composite 

 

1. Introduction 

Achieving both strength and flexibility in designing materials simultaneously is turning out to be 

progressively challenging. On account of lightweight Al composites, grain refinement utilizing grain 

refinement strategies such as high-pressure torsion, friction stir processing (FSP), and equal, which 

are key examples of plastic deformation strategies, have proved to produce ultrafine-grained (UFG) 

Al-composite with higher strength (Edalati et al., 2012; Li et al., 2018; Sanchez et al., 2021). However, 
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ductility is reduced in the case of coarse-grained Al-composite due to the presence of low 

dislocation and disjointed coalesce, creating accumulating capabilities due to grain particle size and 

dispersion within the composition (Oyedeji et al., 2021a; 2021b; 2021c). The presence of second-

phase particles can significantly increase dislocation accumulation ability and resistance to 

dislocation sliding; therefore, adding some particles to the UFG matrix is one alternative. AA7075 

has been cryogenically rolled (Kazemi-Navaee et al., 2021), age-hardenable AA6063 (Engler, 2022), 

AA6082 alloys (Rakhmonov et al., 2021), and in other cases, nano-particles have been used to 

reinforced Al composites (Chakravarthy et al., 2020). All of these methods are some of the ways 

that the addition of second-phase particles has helped improve the strength and flexibility of Al-

composite based on literature. 

Aluminium is the third most plentiful element on the planet (Chaudhary & Tak, 2022). It has 

fundamentally supplanted ferrous components in the scope of uses because of its remarkable 

properties, which include low density that is responsible for its lightweight and resistance to 

corrosion as a result of its passivation characteristics. However, there are some disadvantages when 

Aluminum is used alone for some industrial applications (Kulekci, 2008; Sharma et al., 2021). To 

fix and combat defects/imperfections/irregularities in pure aluminium, the combinations of the 

pure Al with other materials leading to the formation of another material known as Al-composite 

was found. An example of the Al-composite is the Al-Metallic Matrix Composite (MMC). An MMC 

is an intensified material made by joining two distinct parts to make a reinforced material. The 

constant material where the reinforcing material is consolidated, be it in the form of particles, 

textiles, or whiskers, is alluded to as the matrix of the MMC (Chou et al., 1985). Furthermore, the 

reinforcing material can also be in the form of continuous or discontinuous particles. The term 

"hybrid metal matrix composite" (HMMC) refers to a material that contains more than one 

reinforcing element in addition to the matrix. MMCs assume a significant part in our day to day 

routines as materials that are mostly in use are made from MMCs. Some of the examples of 

reinforcing materials used in MMCs to develop mechanical structures are tungsten carbides, 

metallic binders, graphites, among others. When a typical material fails to fulfill the proper 

standards or specifications, it is usually used. The needed attribute to be reached with a base metal 

determines the metal matrix's reinforcement. MMCs in the form of Particulate Metal Matrix 

Composites (PMMCs) are a type of MMC (Kordijazi et al., 2021; Miracle, 2005).  

Scholars have used the Grey Relational Analysis (GRA) model to achieve optimum parameters 

in the production of optimized materials with superior mechanical properties for engineering 

applications such as aircraft, automobiles, and chemical plants, among others. For instance, Pandya 

and Rathod (2020) used the GRA and were able to find the ideal composition of agricultural 

reinforcement materials to build polymer-matrix composites with good mechanical properties. 

Sumesh and Kanthavel (2020) produced optimum parameters for agricultural reinforcing materials, 

using the GRA approach and an artificial neural network. GRA has also been employed to optimize 

mechanical properties (Reddy & Chalamalasetti, 2021; Soorya Prakash et al., 2020). Thus, studies 

confirm the suitability of the GRA model for optimization problems (Yin, 2013). 

The current study aims to learn about the mechanical behavior of Al-Mg-Si metal matrix 

reinforced by palm kernel shell ash (PKSA) produced through powder metallurgy using the GRA. 

and statistical analysis. GRA was used to determine the ideal percentage weight composition of 

PKSA that gives the best mechanical qualities to obtain the best quality features. Section 1 contains 

the study's introduction and general background knowledge, section 2 contains materials and 

methods as they relate to this study, section 3 considers the study's experimental design, section 4 

contains the experimental study's results and their discussions, and section 5 concluded the study. 

2. Materials and methods 

2.1 Materials and production 

A palm oil processing plant in Nigeria, which is one of the major producers of oil palm, provided 

fresh palm kernel shells (Oyedeji et al., 2021a; Oyedeji et al., 2020). The fundamental Aluminum 
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6066 composite source was obtained from Shanghai Worldyang Chemical Co., Ltd., China, and 

comprised of unadulterated aluminum, manganese, silicon, chromium, magnesium, and copper 

powder. To act as reinforcement for the created aluminum matrix, the palm kernel shells were 

burned into ash. Details of the fabrication that took place between January 2020 and January 2021 

exist in previous studies (Oyedeji et al., 2022). 

To optimize mechanical properties based on the influence of PKSA reinforcement, the grey 

relational approach was utilized, which assessed performance attributes and normalized them from 

zero to one. This technique is known as grey relational generation. Using the normalized data, the 

grey relational coefficient was calculated. The Grey relational grade was then calculated by 

averaging the grey relational coefficients. The grey relationship grade determines the full response. 

A multi-response optimization problem is reduced to a single-response optimization problem using 

this strategy. The grey relational grade is the objective function (Ramu et al., 2018). 

2.2 Mechanical Testing 

2.2.1 Hardness:   According to the ASTM E18-79 standard, the hardness of the composite was 

determined using the Rockwell hardness method with a force of 10 kgf. 

2.2.2 Impact strength:   The samples for the impact test were developed based on standard ISO-8256. 

Izod impact is a single point test that estimates material's resistance to impact from a pendulum. 

In this study, the Ceast Lot – Resil Impactor with Ceast NotchVIS was used. This test was carried 

out under standard conditions of relative air humidity and temperature of 50% and 23 oC 

respectively. 

2.2.3 Modulus of rupture:   The flexural strength test was performed by utilizing a Motorized 

Automatic Recording Tensometer. According to the ASTM D7028-07-201 standard, the samples 

were prepared, while the autographic recording drum of the machine was wrapped with the test 

graph sheet to record the readings of the test.  

3. Experimental design 

A palm oil processing plant in Nigeria, which is one of the major producers of oil palm, provided 

fresh palm kernel shells The experiments are based on regression analysis, probability, and analysis 

of variance (ANOVA), with 11 experimental observations listed in Table 1. 

3.1 Statistical analysis 

The experimental mechanical properties were analyzed using regression analysis, analysis of 

variance (ANOVA), and interaction analysis with the help of Minitab (Version 16.1, Minitab Inc.) 

and Origin (Version 2020, OriginLab) software after the mechanical properties of the developed 

composites were evaluated. The percentage fluctuation in mechanical characteristics and the 

Table 1. The experimental data 

Experiment no. PKSA Al-Mg-Si MOR (MPa) Impact Strength (J) Hardness 

1 0 100 50.4 0.123 63.3 

2 2.034 97.874 59.51 0.126 73 

3 4.451 96.023 64.91 0.138 93 

4 6.0323 93.9677 69.25 0.433 91 

5 8.3902 82.7341 68.28 0.077 88 

6 9.989 90.8879 56.32 0.138 91 

7 12.781 88.0023 58.3 0.066 90.6 

8 13.985 86.8745 64.84 0.111 73 

9 15.997 83.9978 63.71 0.3 89 

10 18.453 82.2348 56.81 0.21 82 

11 20.0842 79.8765 60.07 0.013 0 
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descriptive statistical analysis of PKSA reinforcement on Al-Mg-Si alloy were computed in the 

study of Oyedeji et al. (2021c). 

3.2 Grey relational analysis 

Grey relational analysis is a popular method for determining the degree of link between 

sequences based on the grey relational grade. In recent times, some researchers have utilized GRA 

optimization method to optimize input parameters resulting in outputs responses based on the 

Grey relational grade (GRG). GRA is usually used to incorporate all of the desired performance 

qualities that are being examined into a solitary number that can be utilized as the single quality 

optimized conditions (Abifarin et al., 2021; Ramu et al., 2018). Based on the form of values for each 

of the output responses, normalization of optimization responses can be classified into three types. 

They are the 'the smaller the better', the 'nominal the better', and the 'higher the better' values 

(Girish et al., 2019). 

For this study, the high values for MOR, Impact Strength and Hardness are desirable for overall 

mechanical properties of the composite. Hence, 'higher the better' normalization criteria of Grey 

relational analysis (GRA) was utilized in the experimental step to generate grey grades and establish 

the response between zero and one. The grey relational coefficient (GRC) was calculated using the 

set data to illustrate how near the expected response is to the actual response. A grey relational 

grade (GRG) represents the overall evaluation of all the individual performance parameters, which 

is produced by averaging GRCs of all the performance parameters for each sample treatment 

(Abifarin et al., 2021; Ramu et al., 2018). Optimizing a single grey relational grade, for example, 

entails balancing a complex set of various performance criteria, with the highest grey relational 

grade-level serving as the ideal level of this process parameter (Abifarin et al., 2021). 

Equation 1 is the linear data preprocessing approach used in this work for the mechanical 

properties of the investigated composite, and the larger the criteria, the better.  

𝑥𝑖(𝑘) =
𝑦𝑖(𝑘) − min 𝑦𝑖(𝑘)

𝑚𝑎𝑥 𝑦𝑖(𝑘) − min 𝑦𝑖(𝑘)
 (1) 

where 𝑥𝑖(𝑘) is the preprocessed data, min 𝑦𝑖(𝑘) is the lowest 𝑦𝑖(𝑘) response estimation, kth, and 

max 𝑦𝑖(𝑘) is the greatest 𝑦𝑖(𝑘) response estimation, kth. The preprocessed data (grey relational 

generation sequences) from the experimental runs of the investigated composites are shown in 

Table 2. 

Deng's grey relational analysis model was built to show the degree of grey relationship between 

two sequences [𝑥𝑜(𝑘)and 𝑥𝑖(𝑘), i= 1, 2, 3, 4; k= 1, 2 & 3]. The grey relational coefficient (GRC) is 

given by 

       𝜉𝑖(𝑘) =
Δ𝑚𝑖𝑛 + 𝜁Δ𝑚𝑎𝑥

Δ𝑜𝑖(𝑘) + 𝜁Δ𝑚𝑎𝑥

 (2) 

where the deviation sequence is, 

 
Table 2. The preprocessed observation data 

Experiment no. MOR (MPa) Impact Strength (J) Hardness  

1 0 0.261905 0.680645 

2 0.483289 0.269048 0.784946 

3 0.769761 0.297619 1 

4 1 1 0.978495 

5 0.948541 0.152381 0.946237 

6 0.314058 0.297619 0.978495 

7 0.419098 0.12619 0.974194 

8 0.766048 0.233333 0.784946 

9 0.706101 0.683333 0.956989 

10 0.340053 0.469048 0.88172 

11 0.512997 0 0 
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Δ𝑜𝑖(𝑘) =∥ 𝑥𝑜(𝑘) − 𝑥𝑖(𝑘) ∥ (3) 

Δ𝑜𝑖(𝑘)  denotes the difference in absolute value between 𝑥𝑜(𝑘)  and 𝑥𝑖(𝑘) , 𝑥𝑜(𝑘)  and 

𝑥𝑖(𝑘)denote the reference and similarity arrangements, respectively, and ζ is the differentiating 

coefficient (0∼1), which is generally allocated an equal weight of 0.5 to each parameter (Abifarin et 

al., 2021). The base of every reaction variable, as well as the majority of variations, are referred to 

as Δmin and Δmax. Table 3 presents the deviation sequence of the data in the experimental runs 

of the analyzed composites. The grey relationship coefficient (GRC), grey relational grade (GRG), 

and ranking are shown in Table 4 in which GRA was used to establish the GRG, and the respective 

value for each experiment number, ranking was carried out for the GRGs. 

3.3 Probability-based multi-objective analysis 

For aerospace applications, as previously stated in the GRA analysis, a considerable value of the 

mechanical qualities of the metallic composite is necessary; thus, the beneficial utility index 

technique was applied. In the computation, the index characteristic indicator contributes a linearly 

positive contribution to the partial preference probability (Ramu et al., 2018). Using Equation 4 and 

Equation 5, important parameters that relates to the partial probability index (denoted as Pij) and 

the normalized factor of the jth utility index (denoted as ∎j) were obtained to compute the 

performance characteristic indicator of the models. 

𝑃𝑖𝑗 = ∎𝑖𝑗𝑥𝑖𝑗 ;  𝑖 = 1, 2, … , 𝑛; 𝑗 = 1,2, … , 𝑚 (4) 

∎𝑗 = 1 (𝑛�̅�𝑗)⁄  (5) 

 

Note that n and m are the sample number and utility indices of each sample respectively as it 

relate to this study, xij is the jth sample's characteristic performance beneficial utility index 

measurement, and xj is the value of the sample characteristic performance indicator's arithmetic 

mean utility index. 

Table 3. The deviation sequence observation data 

Experiment no. MOR (MPa) Impact Strength (J) Hardness 

1 1 0.738095 0.319355 

2 0.516711 0.730952 0.215054 

3 0.230239 0.702381 0 

4 0 0 0.021505 

5 0.051459 0.847619 0.053763 

6 0.685942 0.702381 0.021505 

7 0.580902 0.87381 0.025806 

8 0.233952 0.766667 0.215054 

9 0.293899 0.316667 0.043011 

10 0.659947 0.530952 0.11828 

11 0.487003 1 1 

Table 4. Grey relational coefficients, grades and ranks 

Experiment no. MOR (MPa) Impact Strength (J) Hardness  Samples GRG Rank 

1 0.333333 0.403846 0.610236 C1 0.449139 10 

2 0.491782 0.40619 0.699248 C2 0.532407 9 

3 0.684708 0.415842 1 C3 0.700183 4 

4 1 1 0.958763 C4 0.986254 1 

5 0.906686 0.371025 0.902913 C5 0.726874 2 

6 0.421606 0.415842 0.958763 C6 0.598737 5 

7 0.462577 0.363951 0.95092 C7 0.592483 6 

8 0.681243 0.394737 0.699248 C8 0.591743 7 

9 0.629803 0.612245 0.920792 C9 0.720947 3 

10 0.431054 0.484988 0.808696 C10 0.574913 8 

11 0.506584 0.333333 0.333333 C11 0.391084 11 
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Finally, the analysis' decisive preferred probability is calculated as the product of each candidate 

sample's partial preferable probability. During the ranking process, the candidate sample with the 

best performance characteristics is also determined. The composites' preferred probability 

optimization and ranking are shown in Table 5. 

4. Results and discussion 

4.1 Micro hardness analysis 

The experimental hardness of the various samples with different compositions are displayed in 

Table 6. The results revealed an inconsistent pattern as the compositions change. The mathematical 

modeling of the experimental hardness is shown in Equation 6 using regression analysis. The 

experimental hardness and the modeled hardness are also displayed in Figure 1. The figure revealed 

that the modeled hardness is inconsistent with its corresponding experimental result.  

𝐻𝑎𝑟𝑑𝑛𝑒𝑠𝑠 = 135 −  1.85 PKSA −  0.46 Al − Mg − Si (6) 

The modeled hardness revealed the fitness of the experimental design. This shows that there are 

some factors that influenced the experimental hardness results obtained. The inconsistency is 

further supported by the analysis of variance (ANOVA) of the data as shown in Table 7. The table 

showed that the residual error was 63.5% as compared to the modeled data. The implication is that 

lots of errors or some factors have not been accounted for and this could be responsible to the 

hardness data of the composite. This means that a substantive conclusion cannot be drawn on the 

behavioral pattern of the hardness of the composite as the compositions vary. Hence, it is 

recommended in this study that other factors that may be responsible for hardness of the fabricated 

composite should be investigated. 

It is important to understand the behavior of the resultant hardness value, relative to the 

interaction between Al-Mg-Si and PKSA. The results showed that barely from 82-96% Al-Mg-Si 

mixed with 6-11% of PKSA will give relatively higher hardness value compared to other 

Table 5. Preferable probability optimization 

Experiment no. MOR (MPa) Impact Strength (J) Hardness Pt*1000 Rank 

1 0.074955 0.070893 0.075908 0.403365 9 

2 0.088504 0.072622 0.08754 0.562655 6 

3 0.096535 0.079539 0.111524 0.856313 4 

4 0.102989 0.249568 0.109126 2.804839 1 

5 0.101547 0.04438 0.105528 0.475582 8 

6 0.08376 0.079539 0.109126 0.727013 5 

7 0.086704 0.03804 0.108646 0.358344 10 

8 0.096431 0.063977 0.08754 0.540067 7 

9 0.09475 0.172911 0.106727 1.748549 2 

10 0.084488 0.121037 0.098333 1.00558 3 

11 0.089337 0.007493 0 0 11 

Table 6. Experimental hardness data 

Experiment no. PKSA Al-Mg-Si Hardness 

1 0 100 63.3 

2 2.034 97.874 73 

3 4.451 96.023 93 

4 6.0323 93.9677 91 

5 8.3902 82.7341 88 

6 9.989 90.8879 91 

7 12.781 88.0023 90.6 

8 13.985 86.8745 73 

9 15.997 83.9978 89 

10 18.453 82.2348 82 

11 20.0842 79.8765 0 
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compositions. Also, it is seen that 82-84% Al-Mg-Si mixed with 12-18% give a relatively higher 

hardness value. In addition, to the findings made above, in some instances a particular hardness 

value is desired for a particular application. Thus, these interactions are shown in Figure 2 with the 

specific compositions required for some specific hardness value. 

4.2 Impact strength analysis 

Similar to hardness analysis, the experimental impact strength of the Al-Mg-Si-PKSA 

composites are presented in Table 8. It is noted that there is a gradient in impact strength of the 

composite as the composition varies. The mathematical modeling of the experimental impact 

strength is shown in Equation 7 obtained with the help of regression analysis. The experimental 

and the modeled impact strength are as shown in Figure 3. It is shown that the model impact 

strength does not follow the pattern of that of the experimental. 

Impact Strength (J)  =  − 0.67 +  0.0062 PKSA +  0.0086 Al − Mg − Si (7) 

The modeling revealed the unreliability of the repeatability of the experiment. The results 

showed that there are some factors responsible for the curation of the experimental impact strength 

of the composite that have been accounted for. ANOVA analysis (Table 9) further supports the 

inconsistency observed from the modeling. In the case of the contribution of the unaccounted 

factors on the experimental impact strength, the analysis revealed significant contribution of 81.7%. 

This is a pronounced contribution, which shows the necessity of further investigation of probable 

factors that may be responsible on the impact strength of the composite. These findings also 

showed that substantial conclusion cannot be drawn on the effect of the composition on the impact 

strength of the composite. 

Figure 4 shows the interaction between Al-Mg-Si and PKSA relative to the resultant 

experimental impact strength. The results revealed that 92-95% Al-Mg-Si mixed with 4.5-6.5% of 

PKSA will give a relatively higher impact strength compared to other compositions. The presented 

interaction plot also highlights different compositions of Al-Mg-Si and PKSA with different 

resultant impact strength. 

Table 7. Analysis of Variance for Hardness 

Source DF SS MS % of Contribution 

Modeled data 2 911.5 455.7 36.5 

Residual Error 8 6344.6 793.1 63.5 

Total 10 7256.0 1248.8 100 

Table 8. Experimental impact strength 

Experiment no. PKSA Al-Mg-Si Impact Strength (J) 

1 0 100 0.123 

2 2.034 97.874 0.126 

3 4.451 96.023 0.138 

4 6.0323 93.9677 0.433 

5 8.3902 82.7341 0.077 

6 9.989 90.8879 0.138 

7 12.781 88.0023 0.066 

8 13.985 86.8745 0.111 

9 15.997 83.9978 0.3 

10 18.453 82.2348 0.21 

11 20.0842 79.8765 0.013 

Table 9. Analysis of variance for impact strength 

Source DF SS MS % of Contribution 

Regression 2 0.00741 0.00371 18.3 

Residual Error 8 0.13239 0.01655 81.7 

Total 10 0.1398 0.02026  
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4.3 Modulus of rupture (MOR) analysis 

The experimental MOR of the Al-Mg-Si-PKSA composites are presented in Table 10 as also 

done in the previously discussed mechanical properties. The result also showed variation in MOR 

of the composite as the composition changes. The mathematical modeling of the experimental 

MOR is displayed in Equation 8 obtained with the help of regression analysis. The experimental 

and the modeled impact strength are presented in Figure 5 and this modeling also revealed that the 

experimental design does not fit wonderfully. 

MOR =  149 −  0.775 PKSA −  0.894 Al − Mg − Si (8) 

 

  

Fig 1. Experimental and Modeled Hardness Fig 2. Interaction Plot for Hardness 

 
 

Fig 3. Experimental and Modeled Impact Strength Fig 4. Interaction Plot for Impact Strength 

 
 

Fig 5. Experimental and Modeled MOR Fig 6. Interaction Plot for MOR 
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Table 10. Experimental MOR 

Experiment no. PKSA Al-Mg-Si MOR 

1 0 100 50.4 

2 2.034 97.874 59.51 

3 4.451 96.023 64.91 

4 6.0323 93.9677 69.25 

5 8.3902 82.7341 68.28 

6 9.989 90.8879 56.32 

7 12.781 88.0023 58.3 

8 13.985 86.8745 64.84 

9 15.997 83.9978 63.71 

10 18.453 82.2348 56.81 

11 20.0842 79.8765 60.07 

Table 11. Analysis of Variance for MOR 

Source DF SS MS % of Contribution 

Regression 2 64.15 32.07 50.02 

Residual Error 8 256.31 32.04 49.98 

Total 10 320.45 64.11  

 

The modeling of MOR presented in Figure 5 showed a better fitness of the experiment as 

compared hardness and impact strength of the composite. However, it is important to note that 

the residual errors contributed significantly on MOR of the composite. The ANOVA analysis in 

Table 11 gave a quantitative contribution of the residual error to be 49.98%. As it is recommended 

in other mechanical properties analysis, further study should be conducted on essential factors 

responsible on the mechanical properties of Al-Mg-Si composite. 

The interaction plot of the compositions showing their corresponding MOR is shown in Figure 

6. The results showed an L curve pattern of the composition that gave better with the red color. 

The presented interaction plot also highlights different compositions of Al-Mg-Si and PKSA with 

different resultant MOR. 

5. Conclusion 

Mechanical analysis and modeling of Al-Mg-Si-PKSA composite have been successfully done in 

this study. It was found that the mechanical properties of the composite are inconsistent with 

variation in the composition. The mathematical and graphical modeling of the mechanical 

properties of the composite have been presented. The modeling revealed that the experimental 

mechanical properties are influenced by some external factors that were not considered in this 

study. Analysis of variance further substantiate the modeling with quantitative analysis. The 

interaction study of the analyzed mechanical properties showed a broader view of different 

combination of the compositions with their resultant mechanical properties. It also showed some 

specific compositions that could result to better mechanical properties. It is strongly recommended 

that further analysis should be conducted on other essential factors that may be responsible on the 

mechanical properties of the composite.  
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Appendix: Nomenclature 
  
Symbol Description 
FSP Friction stir processing 
UFG Ultrafine-grained 
MMC Metal Matrix Composite 
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HMMC Hybrid Metal Matrix Composite 
PMMCs Particulate Metal Matrix Composites 
GRA Grey Relational Analysis 
PKSA Palm Kernel Shell Ash 
ASTM American Society for Testing and Materials 
ISO International Organization for Standardization 
m Meters 
s Seconds 
mm Millimetre 
oC Degree Celsius 
ANOVA Analysis of Variance 
MPa Mega-Palsca 
MOR Modulus of Rupture 
J Joules 
xi(k) Preprocessed data/similarity arrangements 
Xo(k) Reference arrangements 
yi(k) Response estimation 

Δ𝑜𝑖(𝑘) Difference in absolute value between xo(k) and xi(k) 

𝜁 Distinguishing coefficient of Deng's GRA model 

Δmin , Δmax The base of every reaction variable 
GRC Grey Relationship Coefficient 
GRG Grey Relational Grade 
Pij Partial positive probability index 

∎j Normalized factor 

jth utility index of the performance characteristic indicator 
xij jth beneficial utility index of the sample's characteristic performance measurement 
n Number of samples in the study 
m Number of utility indices for each sample involved 
xj Sample characteristics performance indicator's arithmetic mean utility index 
DF Degree of Freedom 
SS Sum of Squares 
MS Mean Squares 
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Abstract: Emissions from vehicles are a major contributor to greenhouse gases, and thus climate change. 

Electric vehicles (EVs) provide a promising solution to deal with this problem. Even though in the emerging 

economies like China and Europe, the adoption of EVs is praiseworthy, the pace of the EV rollout in Indonesia 

is slow. The Indonesian electric vehicle market has remained stagnant due to the country's low adoption rate 

of electric vehicles, which is currently less than 0.3%. This is because electric vehicle adoption has been stymied 

in Indonesia for a variety of reasons. As such, the purpose of this study is to determine the factors influencing 

electric vehicle adoption in Indonesia and to rank the barriers to widespread EV rollout in the country using 

the Grey Ordinal Priority Approach (OPA-G). It is found that high initial purchase price, insufficient amount 

of charging infrastructure, and a lack of government incentives are key barriers to the EV adoption in Indonesia. 
 

Keywords: Electric Vehicle; Barriers; Grey Ordinal Priority Approach; Multiple Criteria Decision Analysis; 

Indonesia 

 

1. Introduction 

Transportation is an essential component of contemporary civilization; it is necessary for 

economic development, provision of a living wage for the masses, and the creation of various 

micro and macroeconomic benefits (Krishna, 2021); however, the transportation sector is also one 

of the largest and fastest-growing carbon dioxide emitters, accounting for 16.2 percent of total 

global carbon dioxide (CO2) emissions in 2020 (Ritchie, 2020), which hurt the environment and 

human health (Degirmenci & Breitner, 2017). Countries sought a solution to reduce carbon 

emissions produced in this sector, and Khalili et al., (2019) found that alternative energy sources 

have the potential to replace fossil fuels which currently provide energy for almost 92 percent of 

transportation fleets/vehicles. To reduce reliance on fossil fuel energy, electric vehicles (EVs) offer 

a promising opportunity for countries to replace their transportation sector, which is primarily 

powered by fossil fuel energy, with more environmentally friendly alternative energy (electricity). 

An electric vehicle (EV) is a vehicle that is propelled by one or more traction motors or electric 

motors, with electrical energy stored in batteries or other energy storage (Rudatyo & Tresya, 2021). 

Electric vehicles have the potential to become a viable solution to the growing environmental, 

economic, and energy concerns in transportation such as air quality, climate change, and growing 

urbanization (Haddadian et al., 2015) because they emit fewer greenhouse gases and pollutants into 
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the atmosphere than gasoline or diesel vehicles do (Ehrenberger et al., 2019). However, in a world 

where developed countries like the USA have faced setbacks in the adoption of the EV (Bakker, 

2021), the challenges that the developing countries (excluding China) are facing are no small. 

Currently, more than 94% of the vehicles in Indonesia, a major developing country in East Asia, 

are fossil-fuel vehicles (PWYP, 2019) while EVs account for only 0.2% of them (Grupta & 

Hansmann, 2021). 

According to the World Population Review (2022), Indonesia is in the 11th position as the 

largest emitter of greenhouse gases by contributing around 2.09% of total greenhouse gas 

emissions. To address this issue, Indonesia intends to transition from internal combustion engines 

to more environmentally friendly electric vehicles, a long-term goal that is supported by actions 

such as the issuance of Presidential Regulation No. 55 of 2019, which includes an incentive to 

encourage the transition process. Replacing ICEVs with EVs is also underway in several cities, 

most notably Jakarta, Indonesia's capital, which is routinely included on lists of cities with poor air 

quality, even ranking among the top 6 cities with the worst air quality in 2019 (IQAir, 2022). 

Indonesia is one of the largest emitters of greenhouse gases, one of the primary causes of climate 

change; as Southeast Asia's largest economy and second-largest car manufacturing nation, 

Indonesia is attempting to switch the transportation sector away from fossil fuel-powered vehicles 

and toward more environmentally friendly electric vehicles; however, the challenges Indonesia 

faces are significant, making adoption of electric vehicles in Indonesia extremely slow. Numerous 

studies have identified barriers to the adoption of electric vehicles in Indonesia, but few have 

identified and prioritized the predominant barriers to the adoption of electric vehicles in Indonesia. 

The current study will fill this gap in the literature by identifying the drivers and barriers to electric 

vehicle adoption in Indonesia followed by the weighting of these drivers and barriers based on the 

opinions of the respondents. The current study recognizes the following research questions: 

(1) What is the current status of the electric vehicle (EV) industry in Indonesia? 

(2) Which are the most significant barriers (and drivers) to EV adoption in Indonesia? 

(3) How Indonesia can overcome challenges and improve EV adoption? 

This is the first study where the OPA-G is being employed for the evaluation of barriers to 

electric vehicle adoption. The rest of the study is organized as: The second section reviews the past 

literature on the EV and the status of its current popularity in Indonesia. The third section presents 

the model. The fourth section presents the research methodology. The fifth section presents data 

analysis and discussion. In the last section conclusion and recommendations are reported. 

2. Literature review 

2.1 Overview of electric vehicle industry in developed countries 

Electric Vehicle development is accelerating; after a decade of rapid growth, there are now over 

16 million electric vehicles (EVs) on the road worldwide (Lambert, 2022) of which 90 percent of 

EVs are concentrated in China, Europe, and the United States (IEA, 2020). Several countries, 

particularly developed countries, have made significant strides toward mass EV adoption. 

According to Fortuna (2019), the top 15 countries with the highest EVs uptake in terms of market 

share are all European countries, with Norway leading the pack with 82.7 percent market share in 

the first half of 2021, followed by Iceland (55.6%), Sweden (39.9%), Finland (28.3%), Denmark 

(26.8%), Germany (22.1%), Netherlands (19.7%), Luxembourg (18.3%), Switzerland (18.2%), 

Austria (17.2%), France (15.5%), Portugal (15.4%), Belgium (15.3%), UK (14.9%), and Ireland 

(13.4%). Although the United States (US) is not among the top 15 countries in terms of market 

share of electric vehicles, it ranks third in terms of market size, trailing China and Europe. By 2020, 

Europe has surpassed China as the region that has consistently dominated the world's largest 

electric vehicle market in terms of sales growth since 2012 (Perkins, 2021).  

In addition, in the process of transitioning from internal combustion engine vehicle (ICEV) to 

more environmentally friendly EVs, almost all countries still face no small obstacles except for 

Norway. Scholars (Carranza et al., 2014; D’Egmont, 2015; Olson, 2018) studied EVs in Norway 



International Journal of Grey Systems: Vol. 2, No. 1 Candra (2022)  

40 

 

and discovered that while the country faced some obstacles, such as higher EVs costs relative to 

ICEVs and limited charging infrastructure, the Norwegian government can overcome these 

obstacles through incentives and a clear objective plan to build adequate charging infrastructure. 

Biresselioglu et al. (2018) performed research. on electric mobility in Europe and identified hurdles 

to widespread EV adoption as a scarcity of charging infrastructure, growing electric vehicle prices, 

lengthy charging times, higher EV electricity consumption, and a scarcity of battery raw materials. 

Greene et al., (2014) investigated the EV transition in the United States and concluded that reasons 

inhibiting the shift include the uncertainties around EVs technology and the limited impact of 

governmental regulations. Additionally, they stressed the significance of future studies on EV 

hurdles to remove associated uncertainties and provide a framework for policy development. 

Vassileva and Campillo (2017) concluded that a lack of a strong incentive scheme was a potential 

adoption barrier for Sweden in their analysis of EVs barriers.  

2.2 Overview of electric vehicle industry in developing countries 

Between 2015 and 2020, the data of market share of new electric vehicle sales in "other 

countries" (excluding China, Europe, and the United States) was less than 2%, indicating that the 

majority of countries, particularly developing countries, continue to face barriers to EV adoption 

(IEA, 2021). The absence of a developed country's market structure, network infrastructure, and 

economy are the primary reasons for developing countries' EV adoption to lag behind developed 

countries (Asif et al., 2021). 

Prakash et al. (2018) examined the impediments to widespread EV adoption in India and 

identified insufficient charging infrastructure, a lack of government incentives, and customer 

characteristics as significant barriers. Asadi et al. (2021) conducted a study on the factors influencing 

electric vehicle adoption and discovered that range anxiety, after-sales support, and a lack of 

charging infrastructure in Malaysia were the primary impediments to EV adoption progress. Bigot 

(2020) studied electric vehicles in Russia and discovered that the slow adoption of EVs is primarily 

due to the high cost of EVs, harsh winter weather conditions, and a lack of charging infrastructure; 

however, Russia's charging infrastructure is expanding and will overcome this barrier in the future 

(Habich-Sobiegalla et al., 2018) concluded a study on the purchase intentions of electric vehicles in 

Brazil and discovered the high cost of EVs in comparison to ICEVs and the lack of public 

infrastructure in Brazil. Moeletsi (2021) surveyed EV barriers in Gauteng, South Africa, and 

discovered that the primary factors influencing people's unwillingness to purchase an electric 

vehicle were the vehicle's high purchase price and high battery costs. 

However, although the process of EV adoption in developing countries is arguably slow to non-

existent, even research on EV adoption in developing countries is still scarce (Asif et al., 2021), 

some developing countries have set serious goals and long-term plans for EV adoption like India 

which has set ambitious goals to replace all ICEVs with EVs by 2030 (Chhikara et al., 2021; Das et 

al., 2019). Malaysia has plans to install 125,000 charging stations by 2030, while Thailand has 

established a long-term EV policy with a goal of 1.2 million operational EVs by 2036 and 690 

charging stations (Schröder et al., 2021), and Africa is targeting to generate 1% of global EVs in 

South Africa (Wilberforce, 2021). 

2.3 Overview of electric vehicle industry in Indonesia 

According to CSRI (2019) the Indonesian government has set a target for mass production of 

electric vehicles (EV) of 20% of total vehicle production by 2025, followed by a policy to stop sales 

of internal combustion engines (ICEV) by 2040 to achieve net-zero emissions by 2060 (Haryanto 

et al., 2020), but the progress of electric vehicles in Indonesia is very slow compared to other 

countries (Yuniza et al., 2021). To help accelerate the transition to electric vehicles in Indonesia, 

President Joko Widodo issued Presidential Regulation No. 55 of 2019 in the form of incentives to 

assist the transition from internal combustion engines to an electric vehicle (Maghfiroh et al., 2021). 

However, there was only 0.15 percent of EVs on the road at the end of September 2020 (IESR, 
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2021). According to Yuniza et al. (2021), the incentives offered by the government in the 

presidential regulation were not enough to attract the attention of EVs in the Indonesian market. 

Apart from the lack of attractive government incentives, there are other barriers to the adoption 

of electric vehicles in Indonesia, including the high price of electric vehicles, a scarcity of spare 

parts and repair and maintenance services, an insufficient amount of charging infrastructure, 

limited battery life, a lack of public awareness, slow charging speeds, range anxiety, and a scarcity 

of models (Haryanto et al., 2020; Huda et al., 2019; Natalia et al., 2020; Sidabutar, 2020; Sirait, 2020; 

Utami et al., 2020). 

However, the challenge of high electric vehicle prices will not be a major issue in Indonesia in 

the future (Thorn, 2021), as Indonesia is abundant in raw materials such as nickel and cobalt, which 

are the primary components of electric vehicle batteries, Unfortunately, the technology and 

infrastructure required to process these raw materials remain extremely limited, forcing Indonesia 

to continue importing them from abroad (Setiawan, 2021).  

2.4 Identifications of drivers and barriers of electric vehicles adoption in Indonesia 

2.4.1 High up-front purchase price:   The high initial purchase price is one of the impediments to electric 

vehicle adoption in Indonesia (Sidabutar, 2020). The average purchasing power of cars in Indonesia 

is around 200 million (Prasetyo, 2021), while the cheapest electric vehicle in Indonesia, the DFSK 

Gelora E, costs 480 million Rupiah (Zigwheels, 2022), or more than 200 percent higher than the 

average purchasing power of cars in Indonesia. This results in consumers in Indonesia preferring 

internal combustion engines as their primary choice. The high price of electric vehicles in Indonesia 

is a result of high battery prices, as Indonesia continues to import batteries from China, which 

serve as the primary raw material for electric vehicles (Umah, 2021). 

2.4.2 Range anxiety:   Numerous studies have identified consumer range anxiety as one of the 

significant barriers to the adoption of electric vehicles (Liao et al., 2017; Maghfiroh et al., 2021; 

Marciano & Christian, 2020). This is undoubtedly true when the drivers notice power depletion 

while driving are unsure how far they can travel on their remaining battery charge, or when trips 

are suddenly extended (Graham-Rowe et al., 2012). The uncertainty about the range of an electric 

vehicle's single charge or remaining battery forces drivers to reconsider using electric vehicles for 

lengthy trips (She et al., 2017). 

2.4.3 Insufficient amount of charging infrastructure:   The lack of charging infrastructure is a major 

impediment to the adoption of electric vehicles in Indonesia (Raksodewanto, 2020). As the 

infrastructure that facilitates the primary fuel source for electric vehicles, charging stations are 

critical to the adoption of electric vehicles. However, Indonesia is still far short of the target of 

25,000 gas stations by 2030, with only 200 charging stations in total currently operational due to 

the high cost of gas station installation in Indonesia. The charging infrastructure installed in 

Indonesia is currently insignificant in comparison to the number of gas stations, leading potential 

buyers of Indonesian electric vehicles to assume that Indonesia is still not fully prepared to 

transition to electric vehicles (Jati, 2021). 

2.4.4 Low availability of spare parts and, repairing and maintenance services:   The availability of dealers, 

suppliers, and electric vehicle services is still extremely limited in Indonesia (GEM INDONESIA, 

2020; Khadafi, 2018), owing to the fact that electric vehicle adoption is still in the "early adopter" 

phase, which encourages dealers to sell ICEVs rather than EVs due to the longer anticipated sales 

time, lack of knowledge and competence required to sell, lower profitability for dealers, lower after-

sales revenue from services, and the complexity required to install charging points (SEAI, 2020). 

2.4.5 Limited battery life:   A hurdle to the widespread adoption of electric vehicles is limited battery 

life, as stated (GEM INDONESIA, 2020) during an Electric Vehicles Indonesia webinar. Batteries 

are the main source of power for electric vehicles, but these batteries can only last 8 to 10 years of 
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use. When the battery capacity drops below 80%, the user must replace it with a new battery as it 

is deemed insufficient for transportation applications (Pelletier et al., 2014) and it requires additional 

costs for battery replacement.  

2.4.6 Fewer electric vehicle models:   Another barrier to the widespread adoption of electric vehicles is 

the narrow market for EV models (Haddadian et al., 2015). The limited number of electric vehicle 

models (lack of variety) circulating in Indonesia makes the electric vehicle market unable to meet 

all consumer needs and preferences. At the moment, there are only 18 different electric vehicle 

models scattered throughout Indonesia. Table 1 shows some of the popular EV brands in 

Indonesia.  

Table 1. Popular brands selling EVs in Indonesia 

Brand Models 
Years of 
Active 

Type of 
EV 

Logo Country 

Tesla 

Tesla Model S 
2012 - 
Present 

BEV 

 

The United States Tesla Model X 
2015 – 
Present 

BEV 

Tesla Model 3 
2017 - 
Present 

BEV 

BMW 

BMW i3s 
2013 - 
Present 

ER-EV 

 

Germany BMW i8 2014 - 2020 PHEV 

X5 Plug-in Hybrid 
2014 – 
Present 

PHEV 

Hyundai 

Hyundai IONIQ 
Prime 

2016 – 
Present 

BEV 

 

South Korea 
Hyundai Kona 

Electric 
2017 - 
Present 

HEV 

Nissan 

Nissan LEAF 
2010 - 
Present 

BEV 

 

Japan 
Nissan kicks-e 

POWER 
2016 - 
Present 

BEV 

Porsche 
Porsche Taycan 

Turbo S 
2019 - 
Present 

BEV 

 

Germany 

DFSK DFSK Gelora E 
2021 - 
Present 

BEV 

 

China 

Mitsubishi 
Mitsubishi 
Outlander  

2021 - 
Present 

PHEV 

 

Japan 

Toyota 

C-HR Hybrid 
2016 - 
Present 

HEV 

 

Japan 

Corolla Altis  
2018 - 
Present 

HEV 

Camry  
2019 - 
Present 

HEV 

Lexus UX 300e 
2019 - 
Present 

BEV 

Corolla Cross 
Hybrid 

2020 - 
Present 

HEV 
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2.4.7 Lack of public awareness:   A lack of public awareness is one of the issues leading to the delayed 

adoption of electric vehicles (Fortuna, 2019; Lambert, 2017). Although electric car development is 

still in its infancy, the reality is that many Indonesians are unfamiliar with the technology and some 

are unaware of the possibility to drive an electric vehicle (EV) (Aziz et al., 2020). This illustrates 

that public awareness of electric vehicles in Indonesia is extremely low.  

2.4.8 Lack of government incentives and support:   To encourage the adoption of electric vehicles in 

Indonesia, President Joko Widodo issued Presidential Regulation Number 55 of 2019 concerning 

the Battery Electric Vehicle Acceleration Program for Road Transportation (BEV Regulation). The 

Presidential Regulation contains provisions aimed at accelerating vehicle adoption. Although 

articles 19 and 20 of the Presidential Regulation include fiscal and non-fiscal incentives, the fact is 

that the number of electric vehicles in Indonesia remains low, this is due to the lack of attractive 

incentives from the government to accelerate the adoption of electric vehicles (Yuniza et al., 2021). 

Of the 17 fiscal and non-fiscal incentives, only four are directed to consumers, while the rest are 

directed to companies. Table 2 shows both fiscal and non-fiscal incentives contained in Presidential 

Regulation No. 55 of 2019 on electric vehicles. 

These fiscal and non-fiscal incentives are deemed less attractive and are unlikely to result in a 

significant change in the absence of a subsidy policy for vehicle prices (Yuniza et al., 2021). It is 

unfortunate because some incentive policies, like purchasing subsidies and tax exemptions, are 

more effective than others, particularly when some incentive policies are targeted at particular 

groups (Li et al., 2019). As a result, the primary point of contention is the EV's exclusivity. 

Additionally, the cost of a single electric vehicle unit remains high in comparison to conventional 

vehicles. Several countries, including China, the United States, and France, have implemented price 

reductions or subsidies as a central policy (Volkswagen, 2019). For instance, China has an incentive 

system in place that entails the waiver of certain prohibitions. In major Chinese cities, electric 

vehicles are exempt from registration requirements and driving restrictions that apply to vehicles 

with combustion engines on certain days. The United States utilizes tax credits and exemptions. By 

purchasing an electric vehicle, users can avoid all federal taxes associated with gasoline 

Table 2. Electric Vehicle Incentives in Presidential Regulation No. 55 of  2019 

Fiscal Incentives (Article 19) Non-fiscal incentives (Article 20) 

- Import duty incentives for BEV imports; 

- Sales tax breaks for high-end goods; 

- Central and local tax incentives or reductions; 

- Incentives for import duties on machinery, goods, 
and materials in the context of  investment; 

- Duty suspension in the context of  export; 

- Government-funded duty incentives on the import 
of  raw materials and/or auxiliary materials used in 
the production line; 

- Incentives for the manufacture of  charging station 
equipment; 

- Export financing incentives; 

- Fiscal incentives for research, development, and 
technological innovation activities, as well as 
industrial vocational components, for Battery-
Powered Electric Vehicles; 

- Parking rates at areas designated by the Regional 
Government; 

- Cost-cutting measures for charging electricity at 
charging stations; 

- Assistance with the construction of  charging 
station infrastructure; 

- Professional competency certification for resource-
based electric vehicle industry personnel; and 

- Product certification and/or technical standards 
for battery-based electric vehicle industry 
companies and component manufacturers. 

- Exemptions from certain road usage restrictions; 

- Delegation of  production rights for BEV-related 
technology for which the Central Government 
and/or Regional Governments have obtained a 
patent license; 

- Promoting security and/or ensuring the industrial 
sector's operational activities in order to maintain 
the continuity or reliable performance of  logistics 
and/or manufacturing operations for particular 
industrial enterprises that are critical to the national 
economy. 

Source: Presiden Republik Indonesia (2019) 
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consumption. France offers an incentive program to encourage the purchase of electric vehicles. 

The maximum amount eligible for subsidy is 8,500 euros per electric vehicle purchase (Volkswagen, 

2019). Table 3 summarizes important literature on drivers and barriers to electric vehicle adoption. 

3. Grey ordinal priority approach 

Multiple attribute decision-making techniques are frequently used for evaluation and assessment 

of multiple factors against multiple conflicting attributes. The Ordinal Priority Approach (OPA) is 

a new technique for multiple attribute decision-making that was proposed in 2020 by Amin 

Mahmoudi and colleagues and is a very useful tool to help make complex decisions confidently 

(Mahmoudi & Javed, 2022a). It has seen several applications in just a short span of time. For 

instance, Quartey-Papafio et al. (2021) used the OPA to evaluate healthcare suppliers. Mahmoudi 

and Javed (2022b) used the OPA to evaluate Iranian construction sub-contractors. Bah and 

Tulkinov (2022) used the OPA to rank the automotive parts suppliers. Mahmoudi et al. (2021c) 

showed the feasibility of the OPA for handling big data. Scholars have attempted to extend the 

OPA to solve new problems. Mahmoudi et al. (2021a) proposed the fuzzy Ordinal Priority 

Approach to evaluate green and resilient suppliers. Pamucar et al. (2022) also extended OPA in 

fuzzy environment to prioritize transport planning strategies. Abdel-Basset et al. (2022) extended 

OPA under neutrosophic environment for evaluation of robots.  

One of the major breakthroughs in the OPA theory was the development of Grey Ordinal 

Priority Approach (OPA-G), which was proposed by Mahmoudi et al. (2021b). The model 

combined the benefits of the grey number theory and the OPA. Later, Shajedul (2022) validated 

the OPA-G model by evaluating sustainable agricultural technologies. The OPA-G model does  

Table 3. The summary of drivers and barriers to electric vehicle adoption 

Year Description 
Region of 

focus 
Methodology Reference 

2014 

The study identified the 
relationship between financial 
incentives and other socio-
economic factors to EV adoption 

N/A 
Multiple Linear Regression 

(MLR) analysis 
Sierzchula et al. 

(2014) 

2017 
The study identified the barriers 
that can hamper the transition to 
EV in BRICS Countries  

Brazil, Russia, 
India, China, 

and South 
Africa 

Descriptive Study (Case 
Analysis) 

Pratiwi (2016) 

2019 
The Study explores barriers to the 
uptake of plug-in Electric 
Vehicles (EV) 

Ireland 
Descriptive Study (Case 

study) 
O’Neill et al. (2019) 

2020 

The study identified the 
challenges and rank the barriers 
to the use of Electric Vehicles 
(EV) 

Nepal 
Analytical Hierarchy Process 

(AHP) 
Adhikari et al. 

(2020) 

2020 
The study identified the strategies 
and challenges in Electrical 
Vehicles (EV) adoption 

Indonesia System dynamics Natalia et al. (2020) 

2020 
The study identified the drivers 
and barriers to different types of 
Electric Vehicle (EV) adoption 

Developing 
countries 

Preferred Reporting Items 
for Systematic Reviews and 

Meta-analysis (PRISMA) 

Rajper and Albrecht 
(2020) 

2021 
The study identified the drivers, 
barriers, and support mechanisms 
of transition from ICE to EVs 

India Qualitative approach 
Chhikara et al. 

(2021) 

2021 
The study identified the 
contextual preferential set of EV 
barriers 

India 
Best-Worst Method (BWM) 
and Interpretive Structural 

Modeling (ISM) 
Tarei et al. (2021) 

2022 
The Study identified the factors 
which affect consumer’s 
intention to EV 

Malaysia 
Decision-Making Trials and 

Evaluation Laboratory 
(DEMATEL) 

Asadi et al. (2022) 

2022 
This study will identify the drivers 
and barriers to Electric Vehicle 
(EV) adoption 

Indonesia 
Grey Ordinal Priority 
Approach (OPA-G) 

The current study 
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not require input data to be linguistic variables or pairwise comparisons, but it can present expert, 

criteria, and alternative weights. Defining sets, indexes, variables, and parameters is necessary prior 

to introduce OPA-G. As a result, Table 4 includes all necessary sets, indexes, and variables for 

comprehending the proposed model.  

3.1 Definitions 

The following definitions and operations are integral part of the Grey Ordinal Priority Approach 

(OPA-G) and have been borrowed from Mahmoudi et al. (2021b). 

DEFINITION 1. Assume we have the grey value ⊗ 𝐴. When no distribution exists for the grey 

number ⊗ 𝐴, the kernel of the grey number A should be determined as follows. 

⊗ �̂� =   
1

2
(𝐴 + 𝐴

 
) (1) 

DEFINITION 2. Suppose that we have crisp number A. Therefore, ⊗ 𝐴 has a grey rank in the 

interval [𝑅𝑎𝑛𝑘(𝐴) − 0.5, 𝑅𝑎𝑛𝑘(𝐴) + 0.5]. To convert crisp rank n to grey rank ⊗ 𝑛, Equation 2 

can be employed. 

𝑅𝑎𝑛𝑘 ⊗ 𝑛 = [𝑛 − 0.5, 𝑛 + 0.5] (2) 

DEFINITION 3. If the respondent(s) has reservations about choosing between the ranks 𝐶 

and 𝐷 for a barrier while 𝐶 < 𝐷, then the following relation should be used for the grey rank. 

𝑅𝑎𝑛𝑘(⊗ 𝐶,⊗ 𝐷) = [𝑅𝑎𝑛𝑘(𝐶) − 0.5, 𝑅𝑎𝑛𝑘(𝐷) + 0.5] (3) 

DEFINITION 4. Let ⊗ 𝐴 =  [𝐴 , 𝐴 ] and ⊗ 𝐵 = [𝐵 , 𝐵 ]. The main operations between ⊗ 𝐴 

and ⊗ 𝐵 have been presented in Equations 4 to 7. 

⊗ 𝐴 +⊗ 𝐵 = [𝐴 + 𝐵, 𝐴 + 𝐵],  (4) 

⊗ 𝐴 −⊗ 𝐵 =⊗ 𝐴 + (− ⊗ 𝐵) = [𝐴 − 𝐵, 𝐴 − 𝐵],   (5) 

⊗ 𝐴 ×⊗ 𝐵 = [𝑀𝑖𝑛{𝐴 𝐵, 𝐴 𝐵, 𝐴 𝐵, 𝐴 𝐵 
}, 𝑀𝑎𝑥{𝐴 𝐵, 𝐴 𝐵, 𝐴 𝐵, 𝐴 𝐵 

}], (6) 

⊗𝐴

⊗𝐵
=⊗ 𝐴 ×⊗ 𝐵−1 = [𝑀𝑖𝑛 {

𝐴

𝐵
,

𝐴 

𝐵
,

𝐴 

𝐵
,

𝐴 

𝐵
} , 𝑀𝑎𝑥 {

𝐴

𝐵
,

𝐴 

𝐵
,

𝐴 

𝐵
,

𝐴 

𝐵
}]  (7) 

3.2 Algorithm 

The steps to extract the weights and ranking of the respondents and the barriers to EV adoption 

in Indonesia are listed below.  

STEP 1. Identify the barriers to electric vehicle adoption in Indonesia. 

STEP 2. Identify the respondents based on their knowledge of the problem. 

Table 4. Sets, indexes, and variables for OPA-G method 

Sets 

I Sets of  respondents ∀i ∈ I 

J Sets of  barriers ∀j ∈ J 

Indexes 

I Index of  the respondents (A, …, K) 

J Index of  barriers (1, …, 8) 

Variables 

⊗ 𝑍 Grey objective function 

⊗ 𝑊𝑖𝑗  Grey weight(importance) of  𝐽𝑡ℎbarrier based on respondent at 𝐼𝑡ℎ rank 

Parameters 

⊗i Grey rank of  the respondent i 

⊗j Grey rank of  the barrier j 
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STEP 3. Ranking the barriers: In this stage, the respondent(s) should specify the priorities of 

barriers, and Definitions 2 and 3 should be employed to convert the crisp ranks to grey ranks. Also, 

Definition 1 can be used to sort grey numbers. 

STEP 4. Solving the OPA-G model, finding the weights of the barriers, and ranking the barriers: 

Based on the collected data in Steps 1 to 3, the linear model 8 should be formed. 

Max ⊗ 𝑍 

S.t: 

⊗ 𝑍≤ ⊗ 𝑖(⊗j(⊗r (⊗ 𝑊𝑖𝑗
𝑟 −⊗ 𝑊𝑖𝑗

𝑟+1))  ∀i,j and r 

⊗ 𝑍 ≤⊗ 𝑖 ⊗ 𝑗 ⊗ 𝑚 ⊗ 𝑊𝑖𝑗
𝑚

 ∀i and j 

∑ ∑ ⊗ 𝑊𝑖𝑗 = [0.8,1.2]𝑛
𝑗=1

𝑝
𝑖=1      

⊗ 𝑊𝑖𝑗 ≥ 0 ∀i and j 

where ⊗ 𝑍 is unrestricted in sign. 

(8) 

After solving the grey model 8, Equations 9 and 10 should be used to obtain the grey weight of 

the respondents and barriers. The grey weight of the barriers can be determined using Equation 9. 

⊗ 𝑊𝑗 = ∑⊗ 𝑊𝑖𝑗

𝑝

𝑖=1

, ∀𝑗 (9) 

To calculate the grey weights of the respondents, Equation (10) should be utilized. 

⊗ 𝑊𝑖 = ∑⊗ 𝑊𝑖𝑗

𝑛

𝑗=1

, ∀𝑖 (10) 

 

STEP 5. In this step both Grey Possibility Degree and kernel can be used. The current study 

will use the kernel, which is much easier to calculate. The kernel is given by. 

⊗ 𝑊 =
1

2
(𝑊 + 𝑊) (11) 

4. Results and discussion 

4.1 The research instrument 

The questionnaire was divided into two parts; the first section aimed to gather demographic 

information of the respondents. In the second part, respondents were asked fundamental questions 

about their perceptions of the barriers to electric vehicle adoption in Indonesia. The eight barriers 

came from section 2.4. The 7-point Likert scale, which is an ordinal scale, was used to collect data 

where 1 indicated “1st Priority” and 7 indicated “7th Priority”. Respondents were asked to assign 

ranks to each barrier, and were given freedom to assign any rank to any factor based on their 

viewpoint. 

4.2 Data collection 

The data collection instrument for this study, a questionnaire, was created and distributed 

through Google Form targeted at Indonesian citizens. The data was collected from March to April 

2022. Thirteen respondents filled the questionnaire but eleven of them knew driving while holding 

valid driving license. These eleven respondents formed our sample size. The demographic profile 

of the respondents is shown in Table 5. After converting all data to OPA-G specifications, Lingo 

software was used to build the OPA-G model and its implementation. 
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Table 5. The demographic profile of the respondents (N = 11) 

Characteristics Level Number % 

Age 

21 to 30  6 54.5 

31 to 39  2 18.1 

40 to 49  2 18.1 

50 to 59  1 9.1 

Marital status 

Single  6 54.5 

Married  4 36.3 

Did not answer  1 9.1 

City  

Jakarta  3 27.2 

Surabaya  2 18.1 

Banyuwangi  1 9.1 

Palembang  1 9.1 

Malang  1 9.1 

Bekasi  1 9.1 

Yogyakarta  1 9.1 

Bandung  1 9.1 

Gender 
Male  8 72.7 

Female  3 27.2 

Educational background 
Bachelor (4 year degree)  10 90.9 

High School Diploma  1 9.1 

Driving intensity 

At least 1 day per week   3 27.2 

At least 4 days per week   2 18.1 

At least 5 days per week   2 27.2 

At least 7 days per week  2 27.2 

Purpose of driving 

Work, Personal, and Family  6 54.5 

Personal and Family  2 18.1 

Work and Personal  1 9.1 

Work  1 9.1 

Family  1 9.1 

Knowledge of Government incentives to support EVs 

 Know some of the incentives  7 63.6 

 Know most of the incentives  2 18.1 

Have no idea of the incentives 2 18.2 

Awareness on environmental and pollution-related issues 

Aware with the most of the issues  6 54.5 

Aware with the some of the issues  4 36.3 

Have no idea about the issues  1 9.1 

4.3 The model 

In the current study, eleven respondents and eight barriers/factors were involved and the 

complete model was very lengthy, and thus is shown in the Appendix. The model was run on 

LINGO software. 

5. Data, results and discussion 

The study surveyed eleven respondents with eight separate variables as mentioned in Table 6. It 

is critical to highlight that all respondents were treated equally in the study. Nonetheless, the the 

Grey Ordinal Priority Approach (OPA-G) is still capable of calculating the weight of each 

respondent as well. Tables 7 and 8 indicate the weights and rankings for the barriers and 

respondents. Equations (9) and (10) are used to determine the barrier and respondent weights. In 

these tables, A, B, …, K are the respondents/experts, and B1, B2, …, B8 are our barriers. The 

complete definitions of the barriers are listed below: 

Barrier 1 (B1) = High up-front purchase price; 

Barrier 2 (B2) = Low availability of spare parts, and repairing and maintenance services; 

Barrier 3 (B3) = Insufficient amount of charging infrastructure; 

Barrier 4 (B4) = Limited battery life; 

Barrier 5 (B5) = Lack of public awareness; 
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Table 6. Opinion of respondents for factors to electric vehicle adoption in Indonesia 

Respondents Rank Type B1 B2 B3 B4 B5 B6 B7 B8 

A 
CR 1 3 1 4 2 2 5 1 

GR [0.5,1.5] [2.5,3.5] [0.5,1.5] [3.5,4.5] [1.5,2.5] [1.5,2.5] [4.5,5.5] [0.5,1.5] 

B 
CR 1 2 2 4 3 3 5 4 

GR [0.5,1.5] [1.5,2.5] [1.5,2.5] [3.5,4.5] [2.5,3.5] [2.5,3.5] [4.5,5.5] [3.5,4.5] 

C 
CR 4 3 4 3 4 4 2 3 

GR [3.5,4.5] [2.5,3.5] [3.5,4.5] [2.5,3.5] [3.5,4.5] [3.5,4.5] [1.5,2.5] [2.5,3.5] 

D 
CR 1 7 4 1 1 1 6 1 

GR [0.5,1.5] [6.5,7.5] [3.5,4.5] [0.5,1.5] [0.5,1.5] [0.5,1.5] [5.5,6.5] [0.5,1.5] 

E 
CR 3 1 3 2 3 4 2 2 

GR [2.5,3.5] [0.5,1.5] [2.5,3.5] [1.5,2.5] [2.5,3.5] [3.5,4.5] [1.5,2.5] [1.5,2.5] 

F 
CR 1 1 1 1 6 1 7 1 

GR [0.5,1.5] [0.5,1.5] [0.5,1.5] [0.5,1.5] [5.5,6.5] [0.5,1.5] [6.5,7.5] [0.5,1.5] 

G 
CR 3 4 5 3 3 3 4 2 

GR [2.5,3.5] [3.5,4.5] [4.5,5.5] [2.5,3.5] [2.5,3.5] [2.5,3.5] [3.5,4.5] [1.5,2.5] 

H 
CR 2 2 1 2 2 2 2 2 

GR [1.5,2.5] [1.5,2.5] [0.5,1.5] [1.5,2.5] [1.5,2.5] [1.5,2.5] [1.5,2.5] [1.5,2.5] 

I 
CR 1 3 1 4 2 2 7 3 

GR [0.5,1.5] [2.5,3.5] [0.5,1.5] [3.5,4.5] [1.5,2.5] [1.5,2.5] [6.5,7.5] [2.5,3.5] 

J 
CR 1 1 2 6 2 5 4 2 

GR [0.5,1.5] [0.5,1.5] [1.5,2.5] [5.5,6.5] [1.5,2.5] [4.5,5.5] [3.5,4.5] [1.5,2.5] 

K 
CR 2 2 2 2 2 2 2 2 

GR [1.5,2.5] [1.5,2.5] [1.5,2.5] [1.5,2.5] [1.5,2.5] [1.5,2.5] [1.5,2.5] [1.5,2.5] 

 

Table 7. Weight and ranking of barriers 

Barriers 𝑊 𝑊 ⊗ 𝑊 Rank 

High up-front purchase price 0.159 0.211 0.185 1 

Low availability of spare parts, and repairing and maintenance services 0.108 0.159 0.133 4 

Insufficient amount of Charging infrastructure 0.125 0.176 0.151 2 

Limited battery life 0.078 0.120 0.099 7 

Lack of public awareness 0.082 0.141 0.111 6 

Range anxiety 0.087 0.136 0.112 5 

Fewer Electric Vehicles models 0.045 0.085 0.065 8 

Lack of government incentives 0.116 0.173 0.145 3 

 

Table 8. Weights and ranks of the respondents 

Respondents 𝑊 𝑊 ⊗ 𝑊 Rank 

A 0.111 0.164 0.138 1 

B 0.070 0.119 0.094 6 

C 0.033 0.063 0.048 11 

D 0.102 0.128 0.115 2 

E 0.070 0.114 0.092 7 

F 0.104 0.116 0.110 5 

G 0.046 0.091 0.069 8 

H 0.052 0.073 0.063 9 

I 0.088 0.137 0.112 3 

J 0.086 0.135 0.111 4 

K 0.038 0.060 0.049 10 

Barrier 6 (B6) = Range anxiety; 

Barrier 7 (B7) = Fewer Electric Vehicles (EVs) models; 

Barrier 8 (B8) = Lack of government incentives. 

As shown in Table 7, The high upfront purchase price of electric vehicles is the most significant 

constraint in Indonesia, followed by an insufficient amount of charging infrastructure in second 

place and a lack of government incentives in third place, while limited battery life and a lack of 
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electric vehicle models are the two lowest barriers to electric vehicle adoption in Indonesia. 

Additionally, as shown in Table 8, the OPA-G was successful in determining the rank of each 

respondent. Whereas respondent 'K' and respondent 'C' are the two least reliable respondents and 

rank in the bottom two, this is because respondent 'K' answered all core questions with the same 

answer while respondent C answered all core questions with two consecutively repeated answers. 

The ranking and weights of the eight barriers to the electric vehicle adoption in Indonesia are 

shown in Figure 1. 

Transportation is critical for connecting people, places, goods, and services, as well as for 

community development, improving people's quality of life and the economy's overall health. 

However, it is also a significant source of greenhouse gases. The world, including Indonesia, is 

attempting to address these issues by shifting to more environmentally friendly energy sources and 

shifting away from fossil fuel-powered vehicles toward electric vehicles. However, Indonesia is 

having difficulty adopting electric vehicles; barriers such as a lack of charging infrastructure, the 

high cost of electric vehicles, and a lack of public awareness all contributed to the slow adoption 

of EVs. Recognizing the most significant drivers and barriers to electric vehicle adoption can help 

Indonesia choose the best method to overcome these barriers as well as improve the EVs adoption. 

Therefore, the current study identified the factors of electric vehicle adoption in Indonesia and 

applied the OPA-G method to evaluate those factors. After analyzing the responses of all 

respondents, Table 7 was created. The results indicate that the top three barriers to electric vehicle 

adoption in Indonesia are a high initial purchase price, an insufficient amount of charging 

infrastructure, and a lack of government incentives for EVs, followed by a lack of spare parts and 

repair and maintenance services, range anxiety, a lack of public awareness, a limited battery life, 

and a lack of EV models. 

However, the current study discovered that there is no literature suggesting an uncertain ranking 

for the barriers to electric vehicle adoption in Indonesia. As a result, the current study used the 

OPA-G model to account for the uncertainty associated with barriers to electric vehicle adoption 

and to determine the relative importance of various barriers. With the OPA-G method, decision-

makers can truly benefit from a high degree of flexibility when dealing with a variety of electric 

vehicle-related factors and uncertainties. Additionally, the OPA-G method eliminates the need for 

data normalization, a pairwise comparison matrix, and opinion aggregation. 

6. Conclusion 

Climate change and greenhouse gas emissions have become increasingly serious in recent years. 

While transportation is an integral part of any country, it cannot be denied that it is also a significant 

 

Fig 1. The weights and ranks of the barriers to EV adoption 
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contributor to greenhouse gases, and Indonesia, as one of the largest emitters, takes this issue 

seriously. Indonesia is following developed countries' lead in addressing the issue of greenhouse 

gases by transitioning to electric vehicles that are more environmentally friendly than fossil fuel 

vehicles. However, the barriers to the adoption of electric vehicles are not insignificant; even 

Indonesia, Southeast Asia's largest economy, has less than 0.3 percent of electric vehicles due to 

barriers such as the high cost of electric vehicles in Indonesia, insufficient number of charging 

infrastructure, and a lack of government incentives. This pushes Indonesia to re-identify and 

prioritizes the barriers to electric vehicle adoption. There are numerous Multi-Criteria Decision-

Making approaches available in the literature to assist decision-makers, but several of these 

methods are incapable of dealing with information ambiguity. Thus, the Grey Ordinal Priority 

Approach (OPA-G) was used in this study, a current multi-attribute decision-making technique 

that assists decision-makers in identifying the barriers to electric car adoption. In Indonesia, choose 

the best feasible solution for the adoption of electric vehicles. 

To combat climate change and greenhouse gas emissions and to achieve carbon neutrality, there 

is no doubt that transitioning to electric vehicles is one of the best steps the world can take, 

regardless of the various challenges associated with each country's stage of electric vehicle adoption. 

This study identified several drivers and barriers to electric vehicle adoption in Indonesia and 

determined that the high cost of EVs, a lack of charging infrastructure, and a lack of government 

incentives were the top three barriers to EV adoption. These top three barriers are inextricably 

linked; by offering more attractive incentives for EVs, such as price subsidies comparable to those 

offered in China, the United States, and Europe, as well as incentives to boost infrastructure 

installation, it is possible to increase the number of EVs in Indonesia. 

In the future, the OPA-G model can be used to prioritize barriers to EV adaption in other 

countries as well. In the current study, only one criterion was involved. In the future, more criteria 

can be considered. Also, barriers like low charging speed can be included in the future.  
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Appendix 

In the OPA-G model built below, L denotes upper limit, U denotes lower limit and W denotes 

weights. A, B, … K denotes respondents/experts. The program was written and run on LINGO 

software.  

MAX=1/2*ZU+1/2*ZL; 

! RESPONDENT A; 

 

1.5*1.5*(WLA1-WLA5)>=ZL; 

0.5*0.5*(WUA1-WUA5)>=ZU; 

1.5*1.5*(WLA3-WLA5)>=ZL; 

0.5*0.5*(WUA3-WUA5)>=ZU; 

1.5*1.5*(WLA8-WLA5)>=ZL; 

0.5*0.5*(WUA8-WUA5)>=ZU; 

1.5*1.5*(WLA1-WLA6)>=ZL; 

0.5*0.5*(WUA1-WUA6)>=ZU; 

1.5*1.5*(WLA3-WLA6)>=ZL; 

0.5*0.5*(WUA3-WUA6)>=ZU; 

1.5*1.5*(WLA8-WLA6)>=ZL; 

0.5*0.5*(WUA8-WUA6)>=ZU; 

1.5*2.5*(WLA5-WLA2)>=ZL; 

0.5*1.5*(WUA5-WUA2)>=ZU; 

1.5*2.5*(WLA6-WLA2)>=ZL; 

0.5*1.5*(WUA6-WUA2)>=ZU; 

1.5*3.5*(WLA2-WLA4)>=ZL; 

0.5*2.5*(WUA2-WUA4)>=ZU; 

1.5*4.5*(WLA4-WLA7)>=ZL; 

! RESPONDENT C; 

 

1.5*2.5*(WLC7-WLC2)>=ZL; 

0.5*1.5*(WUC7-WUC2)>=ZU; 

1.5*2.5*(WLC7-WLC4)>=ZL; 

0.5*1.5*(WUC7-WUC4)>=ZU; 

1.5*2.5*(WLC7-WLC8)>=ZL; 

0.5*1.5*(WUC7-WUC8)>=ZU; 

1.5*3.5*(WLC2-WLC1)>=ZL; 

0.5*2.5*(WUC2-WUC1)>=ZU; 

1.5*3.5*(WLC4-WLC1)>=ZL; 

0.5*2.5*(WUC4-WUC1)>=ZU; 

1.5*3.5*(WLC8-WLC1)>=ZL; 

0.5*2.5*(WUC8-WUC1)>=ZU; 

1.5*3.5*(WLC2-WLC3)>=ZL; 

0.5*2.5*(WUC2-WUC3)>=ZU; 

1.5*3.5*(WLC4-WLC3)>=ZL; 

0.5*2.5*(WUC4-WUC3)>=ZU; 

1.5*3.5*(WLC8-WLC3)>=ZL; 

0.5*2.5*(WUC8-WUC3)>=ZU; 

1.5*3.5*(WLC2-WLC5)>=ZL; 

1.5*4.5*(WLD3-WLD7)>=ZL; 

0.5*3.5*(WUD3-WUD7)>=ZU; 

1.5*6.5*(WLD7-WLD2)>=ZL; 

0.5*5.5*(WUD7-WUD2)>=ZU; 

1.5*7.5*(WLD2)>=ZL; 

0.5*6.5*(WUD2)>=ZU; 

 

! RESPONDENT E; 

 

1.5*1.5*(WLE2-WLE4)>=ZL; 

0.5*0.5*(WUE2-WUE4)>=ZU; 

1.5*1.5*(WLE2-WLE7)>=ZL; 

0.5*0.5*(WUE2-WUE7)>=ZU; 

1.5*1.5*(WLE2-WLE8)>=ZL; 

0.5*0.5*(WUE2-WUE8)>=ZU; 

1.5*2.5*(WLE4-WLE1)>=ZL; 

0.5*1.5*(WUE4-WUE1)>=ZU; 

1.5*2.5*(WLE7-WLE1)>=ZL; 

0.5*1.5*(WUE7-WUE1)>=ZU; 

1.5*2.5*(WLE8-WLE1)>=ZL; 

0.5*1.5*(WUE8-WUE1)>=ZU; 
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0.5*3.5*(WUA4-WUA7)>=ZU; 

1.5*5.5*(WLA7)>=ZL; 

0.5*4.5*(WUA7)>=ZU; 

 

! RESPONDENT B; 

 

1.5*1.5*(WLB1-WLB2)>=ZL; 

0.5*0.5*(WUB1-WUB2)>=ZU; 

1.5*1.5*(WLB1-WLB3)>=ZL; 

0.5*0.5*(WUB1-WUB3)>=ZU; 

1.5*2.5*(WLB2-WLB5)>=ZL; 

0.5*1.5*(WUB2-WUB5)>=ZU; 

1.5*2.5*(WLB3-WLB5)>=ZL; 

0.5*1.5*(WUB3-WUB5)>=ZU; 

1.5*2.5*(WLB2-WLB6)>=ZL; 

0.5*1.5*(WUB2-WUB6)>=ZU; 

1.5*2.5*(WLB3-WLB6)>=ZL; 

0.5*1.5*(WUB3-WUB6)>=ZU; 

1.5*3.5*(WLB5-WLB4)>=ZL; 

0.5*2.5*(WUB5-WUB4)>=ZU; 

1.5*3.5*(WLB6-WLB4)>=ZL; 

0.5*2.5*(WUB6-WUB4)>=ZU; 

1.5*3.5*(WLB5-WLB8)>=ZL; 

0.5*2.5*(WUB5-WUB8)>=ZU; 

1.5*3.5*(WLB6-WLB8)>=ZL; 

0.5*2.5*(WUB6-WUB8)>=ZU; 

1.5*4.5*(WLB4-WLB7)>=ZL; 

0.5*3.5*(WUB4-WUB7)>=ZU; 

1.5*4.5*(WLB8-WLB7)>=ZL; 

0.5*3.5*(WUB8-WUB7)>=ZU; 

1.5*5.5*(WLB7)>=ZL; 

0.5*4.5*(WUB7)>=ZU; 

0.5*2.5*(WUC2-WUC5)>=ZU; 

1.5*3.5*(WLC4-WLC5)>=ZL; 

0.5*2.5*(WUC4-WUC5)>=ZU; 

1.5*3.5*(WLC8-WLC5)>=ZL; 

0.5*2.5*(WUC8-WUC5)>=ZU; 

1.5*3.5*(WLC2-WLC6)>=ZL; 

0.5*2.5*(WUC2-WUC6)>=ZU; 

1.5*3.5*(WLC4-WLC6)>=ZL; 

0.5*2.5*(WUC4-WUC6)>=ZU; 

1.5*3.5*(WLC8-WLC6)>=ZL; 

0.5*2.5*(WUC8-WUC6)>=ZU; 

1.5*4.5*(WLC1)>=ZL; 

0.5*3.5*(WUC1)>=ZU; 

1.5*4.5*(WLC3)>=ZL; 

0.5*3.5*(WUC3)>=ZU; 

1.5*4.5*(WLC5)>=ZL; 

0.5*3.5*(WUC5)>=ZU; 

1.5*4.5*(WLC6)>=ZL; 

0.5*3.5*(WUC6)>=ZU; 

 

! RESPONDENT D; 

 

1.5*1.5*(WLD1-WLD3)>=ZL; 

0.5*0.5*(WUD1-WUD3)>=ZU; 

1.5*1.5*(WLD4-WLD3)>=ZL; 

0.5*0.5*(WUD4-WUD3)>=ZU; 

1.5*1.5*(WLD5-WLD3)>=ZL; 

0.5*0.5*(WUD5-WUD3)>=ZU; 

1.5*1.5*(WLD6-WLD3)>=ZL; 

0.5*0.5*(WUD6-WUD3)>=ZU; 

1.5*1.5*(WLD8-WLD3)>=ZL; 

0.5*0.5*(WUD8-WUD3)>=ZU; 

1.5*2.5*(WLE4-WLE3)>=ZL; 

0.5*1.5*(WUE4-WUE3)>=ZU; 

1.5*2.5*(WLE7-WLE3)>=ZL; 

0.5*1.5*(WUE7-WUE3)>=ZU; 

1.5*2.5*(WLE8-WLE3)>=ZL; 

0.5*1.5*(WUE8-WUE3)>=ZU; 

1.5*2.5*(WLE4-WLE5)>=ZL; 

0.5*1.5*(WUE4-WUE5)>=ZU; 

1.5*2.5*(WLE7-WLE5)>=ZL; 

0.5*1.5*(WUE7-WUE5)>=ZU; 

1.5*2.5*(WLE8-WLE5)>=ZL; 

0.5*1.5*(WUE8-WUE5)>=ZU; 

1.5*3.5*(WLE1-WLE6)>=ZL; 

0.5*2.5*(WUE1-WUE6)>=ZU; 

1.5*3.5*(WLE3-WLE6)>=ZL; 

0.5*2.5*(WUE3-WUE6)>=ZU; 

1.5*3.5*(WLE5-WLE6)>=ZL; 

0.5*2.5*(WUE5-WUE6)>=ZU; 

1.5*4.5*(WLE6)>=ZL; 

0.5*3.5*(WUE6)>=ZU; 

 

! RESPONDENT F; 

 

1.5*1.5*(WLF1-WLF5)>=ZL; 

0.5*0.5*(WUF1-WUF5)>=ZU; 

1.5*1.5*(WLF2-WLF5)>=ZL; 

0.5*0.5*(WUF2-WUF5)>=ZU; 

1.5*1.5*(WLF3-WLF5)>=ZL; 

0.5*0.5*(WUF3-WUF5)>=ZU; 

1.5*1.5*(WLF4-WLF5)>=ZL; 

0.5*0.5*(WUF4-WUF5)>=ZU; 

1.5*1.5*(WLF6-WLF5)>=ZL; 

 

0.5*0.5*(WUF6-WUF5)>=ZU; 

1.5*1.5*(WLF8-WLF5)>=ZL; 

0.5*0.5*(WUF8-WUF5)>=ZU; 

1.5*6.5*(WLF5-WLF7)>=ZL; 

0.5*5.5*(WUF5-WUF7)>=ZU; 

1.5*7.5*(WLF7)>=ZL; 

0.5*6.5*(WUF7)>=ZU; 

 

! RESPONDENT G; 

 

1.5*2.5*(WLG8-WLG1)>=ZL; 

0.5*1.5*(WUG8-WUG1)>=ZU; 

1.5*2.5*(WLG8-WLG4)>=ZL; 

0.5*1.5*(WUG8-WUG4)>=ZU; 

1.5*2.5*(WLG8-WLG5)>=ZL; 

0.5*1.5*(WUG8-WUG5)>=ZU; 

1.5*2.5*(WLG8-WLG6)>=ZL; 

0.5*1.5*(WUG8-WUG6)>=ZU; 

1.5*3.5*(WLG1-WLG2)>=ZL; 

0.5*2.5*(WUG1-WUG2)>=ZU; 

1.5*3.5*(WLG4-WLG2)>=ZL; 

0.5*2.5*(WUG4-WUG2)>=ZU; 

1.5*3.5*(WLG5-WLG2)>=ZL; 

0.5*2.5*(WUG5-WUG2)>=ZU; 

1.5*3.5*(WLG6-WLG2)>=ZL; 

0.5*2.5*(WUG6-WUG2)>=ZU; 

1.5*3.5*(WLG1-WLG7)>=ZL; 

0.5*2.5*(WUG1-WUG7)>=ZU; 

1.5*3.5*(WLG4-WLG7)>=ZL; 

0.5*2.5*(WUG4-WUG7)>=ZU; 

1.5*3.5*(WLG5-WLG7)>=ZL; 

0.5*2.5*(WUG5-WUG7)>=ZU; 

1.5*3.5*(WLG6-WLG7)>=ZL; 

0.5*2.5*(WUG6-WUG7)>=ZU; 

1.5*4.5*(WLG2-WLG3)>=ZL; 

0.5*3.5*(WUG2-WUG3)>=ZU; 

1.5*4.5*(WLG7-WLG3)>=ZL; 

0.5*3.5*(WUG7-WUG3)>=ZU; 

1.5*5.5*(WLG3)>=ZL; 

0.5*4.5*(WUG3)>=ZU; 

! RESPONDENTS H; 

 

1.5*1.5*(WLH3-WLH1)>=ZL; 

0.5*0.5*(WUH3-WUH1)>=ZU; 

1.5*1.5*(WLH3-WLH2)>=ZL; 

0.5*0.5*(WUH3-WUH2)>=ZU; 

1.5*1.5*(WLH3-WLH4)>=ZL; 

0.5*0.5*(WUH3-WUH4)>=ZU; 

1.5*1.5*(WLH3-WLH5)>=ZL; 

0.5*0.5*(WUH3-WUH5)>=ZU; 

1.5*1.5*(WLH3-WLH6)>=ZL; 

0.5*0.5*(WUH3-WUH6)>=ZU; 

1.5*1.5*(WLH3-WLH7)>=ZL; 

0.5*0.5*(WUH3-WUH7)>=ZU; 

1.5*1.5*(WLH3-WLH8)>=ZL; 

0.5*0.5*(WUH3-WUH8)>=ZU; 

1.5*2.5*(WLH1)>=ZL; 

0.5*1.5*(WUH1)>=ZU; 

1.5*2.5*(WLH2)>=ZL; 

0.5*1.5*(WUH2)>=ZU; 

1.5*2.5*(WLH4)>=ZL; 

0.5*1.5*(WUH4)>=ZU; 

1.5*2.5*(WLH5)>=ZL; 

0.5*1.5*(WUH5)>=ZU; 

1.5*2.5*(WLH6)>=ZL; 

0.5*1.5*(WUH6)>=ZU; 

1.5*2.5*(WLH7)>=ZL; 

0.5*1.5*(WUH7)>=ZU; 

1.5*2.5*(WLH8)>=ZL; 

0.5*1.5*(WUH8)>=ZU; 

 

! RESPONDENTS I; 

 

1.5*1.5*(WLI1-WLI5)>=ZL; 

0.5*0.5*(WUI1-WUI5)>=ZU; 

1.5*1.5*(WLI3-WLI5)>=ZL; 

0.5*0.5*(WUI3-WUI5)>=ZU; 

1.5*1.5*(WLI1-WLI6)>=ZL; 

0.5*0.5*(WUI1-WUI6)>=ZU; 

1.5*1.5*(WLI3-WLI6)>=ZL; 

0.5*0.5*(WUI3-WUI6)>=ZU; 

1.5*2.5*(WLI5-WLI2)>=ZL; 

0.5*1.5*(WUI5-WUI2)>=ZU; 

1.5*2.5*(WLI6-WLI2)>=ZL; 

0.5*1.5*(WUI6-WUI2)>=ZU; 

1.5*2.5*(WLI5-WLI8)>=ZL; 

0.5*1.5*(WUI5-WUI8)>=ZU; 

1.5*2.5*(WLI6-WLI8)>=ZL; 

0.5*1.5*(WUI6-WUI8)>=ZU; 

1.5*3.5*(WLI2-WLI4)>=ZL; 

0.5*2.5*(WUI2-WUI4)>=ZU; 

1.5*3.5*(WLI8-WLI4)>=ZL; 

0.5*2.5*(WUI8-WUI4)>=ZU; 

1.5*4.5*(WLI4-WLI7)>=ZL; 

0.5*3.5*(WUI4-WUI7)>=ZU; 

1.5*7.5*(WLI7)>=ZL; 

0.5*6.5*(WUI7)>=ZU; 

 

! RESPONDENT J; 

 

1.5*1.5*(WLJ1-WLJ3)>=ZL; 

0.5*0.5*(WUJ1-WUJ3)>=ZU; 

1.5*1.5*(WLJ2-WLJ3)>=ZL; 

0.5*0.5*(WUJ2-WUJ3)>=ZU; 

1.5*1.5*(WLJ1-WLJ5)>=ZL; 

0.5*0.5*(WUJ1-WUJ5)>=ZU; 

1.5*1.5*(WLJ2-WLJ5)>=ZL; 

0.5*0.5*(WUJ2-WUJ5)>=ZU; 

1.5*1.5*(WLJ1-WLJ8)>=ZL; 

0.5*0.5*(WUJ1-WUJ8)>=ZU; 

1.5*1.5*(WLJ2-WLJ8)>=ZL; 

0.5*0.5*(WUJ2-WUJ8)>=ZU; 

1.5*2.5*(WLJ3-WLJ7)>=ZL; 

0.5*1.5*(WUJ3-WUJ7)>=ZU; 

1.5*2.5*(WLJ5-WLJ7)>=ZL; 

0.5*1.5*(WUJ5-WUJ7)>=ZU; 

1.5*2.5*(WLJ8-WLJ7)>=ZL; 

0.5*1.5*(WUJ8-WUJ7)>=ZU; 

1.5*4.5*(WLJ7-WLJ6)>=ZL; 

0.5*3.5*(WUJ7-WUJ6)>=ZU; 
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1.5*5.5*(WLJ6-WLJ4)>=ZL; 

0.5*4.5*(WUJ6-WUJ4)>=ZU; 

1.5*6.5*(WLJ4)>=ZL; 

0.5*5.5*(WUJ4)>=ZU; 

 

! RESPONDENT K; 

 

1.5*2.5*(WLK1)>=ZL; 

0.5*1.5*(WUK1)>=ZU; 

1.5*2.5*(WLK2)>=ZL; 

0.5*1.5*(WUK2)>=ZU; 

1.5*2.5*(WLK3)>=ZL; 

0.5*1.5*(WUK3)>=ZU; 

1.5*2.5*(WLK4)>=ZL; 

0.5*1.5*(WUK4)>=ZU; 

1.5*2.5*(WLK5)>=ZL; 

0.5*1.5*(WUK5)>=ZU; 

1.5*2.5*(WLK6)>=ZL; 

0.5*1.5*(WUK6)>=ZU; 

1.5*2.5*(WLK7)>=ZL; 

0.5*1.5*(WUK7)>=ZU; 

1.5*2.5*(WLK8)>=ZL; 

0.5*1.5*(WUK8)>=ZU; 

 

ZL>=ZU; 

 

WUA1+WUA2+WUA3+WUA4+WUA5+WUA6+WUA7+WUA8+WUB1+WUB2+WUB3+WUA4+WUB5+WUB6+WUB7+WUB8+WUC1+WUC2+WUC3+WUC4+WUC5+WUC6+

WUC7+WUC8+WUD1+WUD2+WUD3+WUD4+WUD5+WUD6+WUD7+WUD8+WUE1+WUE2+WUE3+WUE4+WUE5+WUE6+WUE7+WUE8+WUF1+WUF2+WUF3+WUF4+

WUF5+WUF6+WUF7+WUF8+WUG1+WUG2+WUG3+WUG4+WUG5+WUG6+WUG7+WUG8+WUH1+WUH2+WUH3+WUH4+WUH5+WUH6+WUH7+WUH8+WUI1+WUI2+

WUI3+WUI4+WUI5+WUI6+WUI7+WUI8+WUJ1+WUJ2+WUJ3+WUJ4+WUJ5+WUJ6+WUJ7+WUJ8+WUK1+WUK2+WUK3+WUK4+WUK5+WUK6+WUK7+WUK8=0.8; 

 

WLA1+WLA2+WLA3+WLA4+WLA5+WLA6+WLA7+WLA8+WLB1+WLB2+WLB3+WLA4+WLB5+WLB6+WLB7+WLB8+WLC1+WLC2+WLC3+WLC4+WLC5+WLC6+WLC7+

WLC8+WLD1+WLD2+WLD3+WLD4+WLD5+WLD6+WLD7+WLD8+WLE1+WLE2+WLE3+WLE4+WLE5+WLE6+WLE7+WLE8+WLF1+WLF2+WLF3+WLF4+WLF5+WLF6+

WLF7+WLF8+WLG1+WLG2+WLG3+WLG4+WLG5+WLG6+WLG7+WLG8+WLH1+WLH2+WLH3+WLH4+WLH5+WLH6+WLH7+WLH8+WLI1+WLI2+WLI3+WLI4+WLI5+

WLI6+WLI7+WLI8+WLJ1+WLJ2+WLJ3+WLJ4+WLJ5+WLJ6+WLJ7+WLJ8+WLK1+WLK2+WLK3+WLK4+WLK5+WLK6+WLK7+WLK8=1.2; 

 

WLA1>=WUA1; WLA2>=WUA2; WLA3>=WUA3; WLA4>=WUA4; WLA5>=WUA5; WLA6>=WUA6; WLA7>=WUA7; WLA8>=WUA8; WLB1>=WUB1; WLB2>=WUB2; 

WLB3>=WUB3; WLB4>=WUB4; WLB5>=WUB5; WLB6>=WUB6; WLB7>=WUB7; WLB8>=WUB8; WLC1>=WUC1; WLC2>=WUC2; WLC3>=WUC3; WLC4>=WUC4; 

WLC5>=WUC5; WLC6>=WUC6; WLC7>=WUC7; WLC8>=WUC8; WLD1>=WUD1; WLD2>=WUD2; WLD3>=WUD3; WLD4>=WUD4; WLD5>=WUD5; WLD6>=WUD6; 

WLD7>=WUD7; WLD8>=WUD8; WLE1>=WUE1; WLE2>=WUE2; WLE3>=WUE3; WLE4>=WUE4; WLE5>=WUE5; WLE6>=WUE6; WLE7>=WUE7; WLE8>=WUE8; 

WLF1>=WUF1; WLF2>=WUF2; WLF3>=WUF3; WLF4>=WUF4; WLF5>=WUF5; WLF6>=WUF6; WLF7>=WUF7; WLF8>=WUF8; WLG1>=WUG1; WLG2>=WUG2; 

WLG3>=WUG3; WLG4>=WUG4; WLG5>=WUG5; WLG6>=WUG6; WLG7>=WUG7; WLG8>=WUG8; WLH1>=WUH1; WLH2>=WUH2; WLH3>=WUH3; WLH4>=WUH4; 

WLH5>=WUH5; WLH6>=WUH6; WLH7>=WUH7; WLH8>=WUH8; WLI1>=WUI1; WLI2>=WUI2; WLI3>=WUI3; WLI4>=WUI4; WLI5>=WUI5; WLI6>=WUI6; WLI7>=WUI7; 

WLI8>=WUI8; WLJ1>=WUJ1; WLJ2>=WUJ2; WLJ3>=WUJ3; WLJ4>=WUJ4; WLJ5>=WUJ5; WLJ6>=WUJ6; WLJ7>=WUJ7; WLJ8>=WUJ8; WLK1>=WUK1; WLK2>=WUK2; 

WLK3>=WUK3; WLK4>=WUK4; WLK5>=WUK5; WLK6>=WUK6; WLK7>=WUK7; WLK8>=WUK8; 

 

WUA1>=0; WUA2>=0; WUA3>=0; WUA4>=0; WUA5>=0; WUA6>=0; WUA7>=0; WUA8>=0; WUB1>=0; WUB2>=0; WUB3>=0; WUB4>=0; WUB5>=0; WUB6>=0; WUB7>=0; 

WUB8>=0; WUC1>=0; WUC2>=0; WUC3>=0; WUC4>=0; WUC5>=0; WUC6>=0; WUC7>=0; WUC8>=0; WUD1>=0; WUD2>=0; WUD3>=0; WUD4>=0; WUD5>=0; WUD6>=0; 

WUD7>=0; WUD8>=0; WUE1>=0; WUE2>=0; WUE3>=0; WUE4>=0; WUE5>=0; WUE6>=0; WUE7>=0; WUE8>=0; WUF1>=0; WUF2>=0; WUF3>=0; WUF4>=0; WUF5>=0; 

WUF6>=0; WUF7>=0; WUF8>=0; WUG1>=0; WUG2>=0; WUG3>=0; WUG4>=0; WUG5>=0; WUG6>=0; WUG7>=0; WUG8>=0; WUH1>=0; WUH2>=0; WUH3>=0; WUH4>=0; 

WUH5>=0; WUH6>=0; WUH7>=0; WUH8>=0; WUI1>=0; WUI2>=0; WUI3>=0; WUI4>=0; WUI5>=0; WUI6>=0; WUI7>=0; WUI8>=0; WUJ1>=0; WUJ2>=0; WUJ3>=0; 

WUJ4>=0; WUJ5>=0; WUJ6>=0; WUJ7>=0; WUJ8>=0; WUK1>=0; WUK2>=0; WUK3>=0; WUK4>=0; WUK5>=0; WUK6>=0; WUK7>=0; WUK8>=0; 
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