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Abstract: Singular optimization of engine conditions for better engine performance have been studied 

extensively. However, in the practical sense, more than one performance characteristics are essential in the 

optimization of engine conditions. The current study investigates the effect, optimization, and modeling of 

engine conditions on multi-characteristics of a single cylinder-dual direct injection-water cooled diesel engine 

with the help of Taguchi-grey relational and regression analyses. The engine conditions employed are engine 

load, hydrogen, multi-walled carbon nanotubes (MWCNTs), ignition pressure, and ignition timing, at four 

different levels. The engine performance characteristics analyzed were brake thermal efficiency (BTE), brake 

specific fuel consumption (BSFC), hydrocarbons (HC), nitrogen oxide (NOx), carbon monoxide (CO), and 

carbon dioxide (CO2). The results showed that there was a similar behavioral pattern of the effect of engine 

conditions on engine performance, except for ignition timing. The optimal settings for better engine 

performance were obtained at 25% engine load, 20% hydrogen, 50 ppm MWCNTs, 220 bar ignition pressure, 

and 21 obTDC ignition timing. Interestingly, the discovered optimal did not fall within the considered 

experimental runs, however, the predicted optimal engine performance was within 95% confidence bounds. It 

is recommended that the experimental work based on the obtained optimal settings should be conducted to 

elucidate the efficacy of the confirmation analysis. The analysis of variance showed that the engine load was the 

most significant factor on the overall engine performance, having a contribution of 71.47%, followed by 

hydrogen and MWCNTs. Also, the ignition pressure and timing were not significant on the overall engine 

performance, which showed a need to place more attention on the significant factors for better engine 

performance. The mathematical and graphical modeling showed the efficacy of the design analysis, while the 

interaction plots showed broader detailed factor settings for better engine performance. 
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1. Introduction 

In ongoing many years, all-out overall energy utilization has been expanded essentially. It 

prompts unnatural weather change and brings about higher temperatures on the earth (Masoudi & 
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Zaccour, 2017) and undermines energy security (Wallington et al., 2013). This effect is detrimental 

to human well-being and the ecosystem (Lin et al., 2011; Arbab et al., 2013). A lot of researches 

have shown that fossil fuels contribute significantly to ozone layer depletion (Oparanti et al., 2022). 

The pace of energy utilization has been reported by International Energy Organization (IEA) to 

reach about 53% by 2030 (Taufiqurrahmi & Bhatia, 2011). Meaning, the adverse effect of the 

utilization of fossil fuels on ozone layers depletion by 2030 is likely to be unbearable. Several pieces 

of research have been conducted on the several ways to mitigate these challenges. Abu-Jrai et al. 

(2009) researched the likelihood of improving performance efficiency and reducing combustion 

emissions of a single-cylinder-direct injection-diesel engine. In their work, simulated reformer 

product gas was added to a typical ultra-low Sulphur diesel (ULSD) and a replacement ultra-clean 

synthetic GTL (gas-to-liquid) fuel to research engine performance, combustion, and emissions at 

different operating conditions. They concluded that an optimal combination of GTL and simulated 

reformer product gas significantly improved both NOx and smoke emissions. Ren et al. (2008) 

investigated combustion and emissions of a diesel direct engine injection (DI) powered by diesel-

oxygenate blends. They observed that there was a discount in smoke concentration no matter the 

kinds of oxygenating additives, however, the smoke reduced when oxygen mass fraction within the 

blends was increased without increasing the NOx and engine thermal efficiency. Conversely, it had 

been noticed that CO and HC concentrations reduced with a rise in oxygen mass fraction within 

the blends. Li et al. (2015) fueled an immediate injection diesel with pentanol to research the 

combustion and emissions of the compression ignition of the engine. It had been discovered that 

NOx and soot emissions were significantly reduced for pentanol with comparable efficiencies 

under one injection strategy without exhaust gas recirculation (EGR). It had been also observed 

that the employed pentanol fuel offered obvious characteristics to realize a smoother heat release 

rate with reduced peak pressure-rise rate in contrast to the diesel oil. Prabhu and Ramanan (2020) 

studied the effect of emission and performance characteristics in an unmodified diesel powered by 

pentanol-diesel mixtures at different ratios. They found that pentanol acted as a catalyst (oxidizing) 

thereby reducing the carbon monoxide gas and hydrocarbon emissions. It had been also discovered 

that there was a substantial reduction in NOx emission and also a discount in fuel consumption 

which increased the brake thermal efficiency of the engine. Kalam et al. (2011) investigated the 

emissions and performance characteristics of an indirect ignition diesel fueled with a waste 

vegetable oil. They found that there was a discount in brake power compared with ordinary diesel 

oil. However, a discount in exhaust emissions like unburned hydrocarbon (HC), smoke, carbon 

mono-oxide (CO), and nitrogen oxides (NOx) was generated by the blended fuels. 

Furthermore, many studies are conducted on the optimization of input parameters on the 

emissions and performance efficiency of diesel engines. Sivaramakrishnan and Ravikumar (2014) 

optimized some operation parameters on the performance and emissions of a diesel fueled with 

biodiesel. It had been found that a compression ratio of 17.9, 10 you look after fuel blend, and 3.81 

kW of power were the optimum parameters for the test engine. Leung et al. (2006) optimized engine 

parameters namely; injection pressure, injection timing, and fuel pump plunger diameter. Their 

findings showed that that individual setting of the engine parameters couldn't cause an honest 

balance between PM and NOx emissions, but multiparameter settings with the consideration of 

their cross-interactive effects could reduce particulate matters and hydrocarbon without increasing 

NOx emission and trading off fuel combustion efficiency. Koten et al. (2014) discovered the 

optimum operating conditions for a diesel when it had been fueled with compressed biogas (CBG) 

and pilot diesel dual-fuel. Their findings showed that there have been significantly lower NOx 

emissions emitted under dual-fuel operation for all cases compared to single-fuel mode in the least 

engine load conditions. Ramachander et al. (2021) optimized the emission and combustion 

characteristics of diesel engines operating under the reactivity-controlled compression ignition 

mode. The operating parameters investigated were fuel injection system timings, injection pressure, 

and variable engine load, using Box-Behnken-based response surface methodology. Manigandan et 

al. (2020) administered optimization on the engine conditions of one cylinder-dual direct injection-

water cooled diesel fueled under hydrogen, multiwall carbon nanotubes (MWCNTs), ignition 
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pressure, and ignition timing. Their findings reflected that there's an improvement in brake power 

by 13% and a discount in brake-specific fuel consumption by 8% at full engine load conditions. It 

had been also added in their findings that there was a big emission reduction. 

Taguchi design of experiment (DOE) has to do with the reduction of robust laboratory work or 

experiment to determine the effect of processing parameters or variables on the response of a 

system, product, or process (Taguchi & Phadke, 1989; Taguchi et al., 2000; Taguchi et al., 2005). 

However, Taguchi is only capable of optimizing a singular response of a process, product, or 

system. However, the Taguchi DOE method with the assistance of grey relational analysis (GRA) 

can optimize multiple responses. In other words, when there is a complex situation or uncertainty, 

like in the case of a need to optimize more than one characteristic of a system, product, or process, 

GRA can be employed to simplify the situation for possible optimization (Julong 1989; Javed et al., 

2019). GRA is employed to convert multiple response characteristics into a singular response 

understood by the Taguchi DOE technique.  GRA has been explored in several applications in the 

past studies. Tosun (2006) employed GRA for the optimization of multi-responses in drilling 

operations. Hamzaçebi and Pekkaya (2011) determined stock investments using GRA. Li et al. 

(2019) employed GRA in combination with the incremental capacity analysis technique in the 

application of accurate battery state-of-health (SOH) monitoring for the safe and reliable operation 

of electric vehicles. Wu et al. (2020) incorporated TRIZ, AD, fuzzy, and GRA design as a novel 

design approach in the designing and manufacturing of a product. Senthilkumar et al. (2021) 

blended and optimized a transformer oil with vegetable oil using the Taguchi-GRA technique. This 

review shows that GRA has applications in invariably all areas of endeavors.  

Having discussed the state of the art of the subject matter, it is important to state that several 

studies have considered the optimization of engine conditions for better engine performance and 

reduced emissions. These studies mostly considered the optimization of singular performance 

characteristics, which is an actual sense, there is a need to consider optimization of engine 

conditions for all the important performance characteristics of an engine, such as engine 

conditions, fuel blends, etc. This will lead to efficient optimization. Multiple performance 

characteristics optimization is complicated because all the design of experiment (DOE) techniques 

can optimize singular performance characteristics of a system, process, or product. Due to this 

challenge, Manigandan et al. (2020) evaluated all the multiple performance characteristics of a diesel 

engine using the Taguchi DOE technique. They optimized those characteristics individually, which 

is somewhat not good enough for efficient optimization (Ofodu & Abifarin, 2022). Hence, this 

study identified the gap by employing grey relational analysis (GRA) to assist the Taguchi DOE 

technique for multiple performance characteristics of a single cylinder-dual direct injection-water 

cooled diesel engine. GRA technique is employed to assist the Taguchi design technique because 

the engine performance conditions were complex to optimize due to incomplete and uncertain 

information present in this study. GRA has been proven to mitigate this very challenge (Javed 2019; 

Javed et al., 2019; Abifarin, 2021; Abifarin et al., 2022a). 

2. Research design and methodology 

2.1 Experimental data curation and research design 

This study followed the study of Manigandan et al. (2020). The experimental data was obtained 

from their work for analysis. Tables 1, 2, and 3 show the experimental factors considered, the 

experimental runs, and the corresponding data, respectively for the analysis in this study. The 

Taguchi design and modeling were done using Minitab 16 software, while interaction plots and 

other plots were done using Origin 19 software. 

2.2 Research methodology and data analysis 

Grey relational analysis was conducted on the experimental data presented in Table 3. The data 

was first normalized using grey relational generation. The break thermal efficiency (BTE) was 

normalized using the higher-the-better normalization condition, as giving in Equation 1.  
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Table 1. Experimental factors and levels 

Factors 
Engine 

load (%) 
Hydrogen 

(%) 
MWCNTs 

(ppm) 
Ignition 

pressure (bar) 
Ignition timing 

(obTDC) 

Factors 
symbols 

A B C D E 

Level 1 25 0 0 180 21 

Level 2 50 10 30 200 23 

Level 3 75 20 50 220 27 

Level 4 100 30 80 240 31 
 

Table 2. Experimental runs 

Exp. 
runs 

Engine load 
(%) 

Hydrogen 
(%) 

MWCNTs 
(ppm) 

Ignition pressure 
(bar) 

Ignition timing 
(obTDC) 

1 25 0 0 180 21 

2 25 10 30 200 23 

3 25 20 50 220 27 

4 25 30 80 240 31 

5 50 0 30 220 31 

6 50 10 0 240 27 

7 50 20 80 180 23 

8 50 30 50 200 21 

9 75 0 50 240 23 

10 75 10 80 220 21 

11 75 20 0 200 31 

12 75 30 30 180 27 

13 100 0 80 200 27 

14 100 10 50 180 31 

15 100 20 30 240 21 

16 100 30 0 220 23 
 

Table 3. Experimental multiple responses of the tested diesel engine 

Exp. runs BTE BSFC HC NOx CO CO2 

1 32.65 755 8.65 120 0.09 2.61 

2 33.88 735 8.5 112 0.08 2.55 

3 37.3 708 8 108 0.05 2.1 

4 35.25 715 8.25 105 0.06 2.32 

5 33.95 662 10.8 210 0.128 4.05 

6 32.15 625 10.2 235 0.125 3.95 

7 34.35 539 9.4 210 0.12 3.8 

8 36.98 468 9.2 198 0.1 3.52 

9 33.55 490 13.05 265 0.135 5.52 

10 35.12 452 12.19 265 0.149 4.32 

11 33.84 485 11.95 280 0.14 4.25 

12 34.5 435 11.25 242 0.132 4.15 

13 33.56 375 14.68 365 0.158 7.25 

14 34.1 355 13.72 315 0.155 6.75 

15 35.95 348 12.68 298 0.145 4.45 

16 35.05 368 15.66 338 0.151 6.2 

 

The reason for the higher-the-better normalization is that break thermal efficiency is required as 

high as possible. Then, the rest of the data, namely; break specific fuel consumption (BSFC), 

hydrocarbons (HC), nitrogen oxide (NOx), carbon monoxide (CO), and carbon dioxide (CO2) 

were normalized using the smaller-the-better normalization condition, as shown in Equation 2. 

The smaller-the-better normalization condition was chosen because we require those 

characteristics as low as possible. A comparison was done with an ideal sequence, 𝑥𝑜(𝑘) (𝑘 = 1, 

2,…,16) for the six performance characteristics. 
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𝑥𝑖(𝑘) =
𝑦𝑖(𝑘) − min 𝑦𝑖(𝑘)

𝑚𝑎𝑥 𝑦𝑖(𝑘) − min 𝑦𝑖(𝑘)
 (1) 

𝑥𝑖(𝑘) =
max 𝑦𝑖(𝑘) − 𝑦𝑖(𝑘)

𝑚𝑎𝑥 𝑦𝑖(𝑘) − min 𝑦𝑖(𝑘)
 (2) 

𝑥𝑖(𝑘) is the data being preprocessed for the ith experiment, and 𝑦𝑖(𝑘) is the initial sequence of the 

mean of the responses. The deviation sequence (Equation 3) was subsequently calculated to enable 

the determination of grey relational coefficient (GRC). The grey relational generation and the 

deviation sequence of the six experimental data are shown in Table 4. 

Δ𝑜𝑖(𝑘) = |𝑥𝑜(𝑘) − 𝑥𝑖(𝑘)| (3) 

where Δ𝑜𝑖(𝑘) , 𝑥𝑜(𝑘) , and 𝑥𝑖(𝑘)  are the deviation, reference sequence, and normalized data, 

respectively. The GRC values were calculated using Equation 4. The GRC values show the 

relationship between the expected and obtained experimental data. 

𝜉𝑖(𝑘) =
Δ𝑚𝑖𝑛 + 𝜁Δ𝑚𝑎𝑥

Δ𝑜𝑖(𝑘) + 𝜁Δ𝑚𝑎𝑥

 (4) 

where 𝜉𝑖(𝑘) is the GRC value of the individual experimental data, computed as a function of Δmin 

and Δmax, the minimum and the maximum deviations of each experimental data. 𝜁  is the 

distinguishing coefficient, whose value is widely assumed to be 0.5 (Mahmoudi et al., 2020; Abifarin 

et al., 2021a). 

Lastly, the grey relational grade (GRG) was calculated using Equation 5. The GRC, GRG, and 

signal to noise (S/N) ratios are displayed in Table 5. The GRG (the converted singular response) 

gives the overall multiple performance characteristics for the six experimental data, which made it 

possible for Taguchi DOE technique to analyze. As always require in GRA Optimization, the 

higher-the-better signal to noise ratio is considered for the Taguchi DOE analysis (Taguchi & 

Phadke, 1989; Taguchi et al., 2000; Taguchi et al., 2005; Abifarin, 2021; Abifarin et al., 2021b; 

Abifarin et al., 2022b; Awodi et al., 2021). 

𝛾𝑖 =
1

𝑛
∑ 𝜉𝑖(𝑘)

𝑛

𝑖=1

 (5) 

𝛾𝑖  is the GRG value obtained for the ith experiment and n is the number of performance 

characteristics.  

Table 4. Grey relational generation and deviation sequence 

 Generation Deviation sequence 

BTE BSFC HC NOx CO CO2 BTE BSFC HC NOx CO CO2 

1 0.097 0 0.915 0.942 0.630 0.901 0.903 1 0.085 0.058 0.370 0.099 

2 0.336 0.049 0.935 0.973 0.722 0.913 0.664 0.951 0.0653 0.027 0.278 0.087 

3 1 0.116 1 0.989 1 1 0 0.885 0 0.012 0 0 

4 0.602 0.098 0.967 1 0.907 0.957 0.398 0.902 0.033 0 0.093 0.043 

5 0.350 0.229 0.635 0.596 0.278 0.621 0.651 0.772 0.366 0.404 0.722 0.379 

6 0 0.319 0.713 0.5 0.306 0.641 1 0.681 0.287 0.5 0.694 0.359 

7 0.427 0.531 0.817 0.596 0.352 0.670 0.573 0.469 0.183 0.404 0.648 0.330 

8 0.938 0.705 0.843 0.642 0.537 0.724 0.062 0.295 0.157 0.358 0.463 0.276 

9 0.272 0.651 0.341 0.385 0.213 0.336 0.728 0.349 0.659 0.615 0.787 0.664 

10 0.577 0.745 0.453 0.385 0.083 0.569 0.423 0.256 0.547 0.615 0.917 0.431 

11 0.328 0.663 0.484 0.327 0.167 0.582 0.672 0.337 0.516 0.673 0.833 0.418 

12 0.456 0.786 0.576 0.473 0.241 0.602 0.544 0.214 0.424 0.527 0.759 0.398 

13 0.274 0.934 0.128 0 0 0 0.726 0.066 0.872 1 1 1 

14 0.379 0.983 0.253 0.192 0.028 0.097 0.621 0.017 0.747 0.808 0.972 0.903 

15 0.738 1 0.389 0.258 0.120 0.544 0.262 0 0.611 0.742 0.880 0.456 

16 0.563 0.951 0 0.104 0.065 0.204 0.437 0.049 1 0.896 0.935 0.796 
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Table 5. Grey relational coefficient (GRC), grey relational grade (GRG) and S/N ratio 

Exp. Runs 
GRC 

GRG S/N ratio 
BTE BSFC HC NOx CO CO2 

1 0.356 0.333 0.855 0.897 0.575 0.835 0.642 -3.853 

2 0.430 0.345 0.885 0.949 0.643 0.851 0.684 -3.304 

3 1 0.361 1 0.977 1 1 0.890 -1.015 

4 0.557 0.357 0.939 1 0.844 0.921 0.770 -2.275 

5 0.435 0.393 0.578 0.553 0.409 0.569 0.490 -6.205 

6 0.333 0.424 0.635 0.5 0.419 0.582 0.482 -6.338 

7 0.466 0.516 0.732 0.553 0.436 0.602 0.551 -5.179 

8 0.890 0.629 0.761 0.583 0.519 0.645 0.671 -3.464 

9 0.407 0.589 0.431 0.448 0.389 0.430 0.449 -6.956 

10 0.542 0.662 0.478 0.448 0.353 0.537 0.503 -5.965 

11 0.427 0.598 0.492 0.426 0.375 0.545 0.477 -6.427 

12 0.479 0.701 0.541 0.487 0.397 0.557 0.527 -5.566 

13 0.408 0.883 0.364 0.333 0.333 0.333 0.443 -7.082 

14 0.446 0.967 0.401 0.382 0.340 0.356 0.482 -6.339 

15 0.656 1 0.450 0.403 0.362 0.523 0.566 -4.949 

16 0.534 0.911 0.333 0.358 0.348 0.386 0.478 -6.406 

3. Results and discussion 

3.1 Effect and optimization of control factors on the engine multiple performance characteristics (GRG) 

The effect of control factors on the multiple performance characteristics (GRG) of the diesel 

engine has been illustrated in Figure 1. The results showed that there GRG value decreased with 

an increase in engine load, while there was an increase in GRG when hydrogen was increased to 

20% before it dropped slightly at 30%. Similar to the effect of hydrogen on the GRG value, 

MWCNTs and ignition pressure, an increase in GRG value was noticed up to level 3, but dropped 

at level 4. But for ignition timing factor, there the value of GRG was inconsistent with the increase 

in ignition timing. In conclusion, the figure shows the optimal settings of those factors for better 

performance of the tested engine, which are 25% engine load, 20% hydrogen, 50 ppm MWCNTs, 

220 bar ignition pressure, and 21 obTDC ignition timing. 
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Fig 1. Effect of control factors on multiple performance characteristics 
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3.2 Significance of control factors on multiple performance of the diesel engine 

The variance analysis (ANOVA) of the engine performance is shown in Table 6. It displays the 

effect and weight of each factor on the resultant performance. It is found that engine load is the 

most significant factor, showing a contribution of 71.47%, followed by hydrogen (15.36%), and 

MWCNTs (8.66%). The other two factors reflected a very little contribution of ignition pressure 

and timing. Thus, much attention should be placed on the significantly influenced factors to 

achieve better engine performance efficiency. 

3.3 Confirmation analysis 

If 𝛾0  is the highest engine performance efficiency at optimal settings and 𝛾𝑚  is the average  

engine performance efficiency, while 𝑞  is the number of the factors, then the predicted grey 

relational grade (engine performance efficiency) is 

𝛾𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝛾𝑚 + ∑ 𝛾0 − 𝛾𝑚

𝑞

𝑖=1

 (6) 

The predicted engine performance efficiency at optimal settings was known to be 0.8997, and 

thus confidence interval (CI) was obtained using probability distribution analysis of the various 

GRG values to check perhaps all the experimental GRG values and the predicted optimal GRG 

value are within 95% confidence bounds. The confidence bounds and the experimental GRG value 

(engine performance) are displayed in Figure 2. The graph shows the possibility that the predicted 

Table 6. ANOVA for engine performance 

Factors 
Degree of 

Freedom (DF) 
Adj SS Adj MS 

Contribution 
(%) 

Remark 

Engine load (%) 3 0.17646 0.05882 71.47 
Most 

significant 

Hydrogen (%) 3 0.03792 0.01264 15.36 Significant 

MWCNTs (ppm) 3 0.02138 0.00713 8.66 Significant 

Ignition pressure (bar) 3 0.00321 0.00107 1.30 Insignificant 

Ignition timing 
(obTDC) 

3 0.00796 0.00265 3.22 Insignificant 

Residual error 0    - 

Total 15 0.24693 0.08231   
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Fig 2. Confidence bounds of the engine performance (GRG) 
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optimal GRG value obtained fall within the 95% confidence bounds. However, further 

experimental work is recommended to be done considering the discovered optimal settings in this 

study. Because the discovered optimal settings were not among the experimental runs considered 

in the initial experimental work. 

3.4 Modeling and interaction of chemical additives and engine parameters on engine performance 

The Equation (7) shows the mathematical modeling of the engine performance (EP), while 

Figure 3 shows the experimental engine performance versus the modeled engine performance. The 

modeling was done using regression analysis with Mintab 16 software. Figure 3 shows that the 

predicted engine performance based on modeling followed the behavioral pattern of the 

experimental. This elucidates the validity of the design and model. 

EP = 0.656 – 0.00329A + 0.00401B + 0.000716C + 0.000351D  – 0.00174E (7) 

 

Figure 4 reflects the interaction plots of various factors on the engine performance. This explains 

the combination of factors settings for various engine performance efficiency. The figure shows 

the detailed combination of all the various factors levels to achieve engine performance as high as 

possible. 

4. Conclusion 

This study has successfully investigated the effect, optimization and modeling of engine 

conditions on multiple performance characteristics of a single cylinder-dual direct injection-water 

 
Fig 3. Experimental versus predicted engine performance 

  
Fig 4. Interaction plots of parameters on engine performance 
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Fig 4. Interaction plots of parameters on engine performance (continued) 

cooled diesel engine with the help of Taguchi grey relational and regression analysis. The multiple 

performance characteristics, namely; the break thermal efficiency (BTE), break specific fuel 

consumption (BSFC), hydrocarbons (HC), nitrogen oxide (NOx), carbon monoxide (CO), and 
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carbon dioxide (CO2) converted to a singular response, which made it feasible for Taguchi design 

technique to analyze. The results showed that there was similar behavioral pattern of the effect of 

engine conditions, except for ignition timing. The optimal settings for better engine performance 

were obtained to be 25% engine load, 20% hydrogen, 50 ppm MWCNTs, 220 bar ignition pressure, 

and 21 obTDC ignition timing. The discovered optimal settings for better engine performance did 

not fall within the experimental runs considered in the analysis. Although, confirmation analysis 

showed that there is possibility that the predicted optimal engine performance was within the 

confidence bound, however, there is a need to conduct experimental work based on the gotten 

optimal settings to elucidate the efficacy of the confirmation analysis. The analysis of variance 

(ANOVA) shows that engine load was the most significant factor with a contribution of 71.47%, 

followed by hydrogen and MWCNTs. The analysis revealed that the ignition pressure and timing 

were not significant on the overall engine performance. This shows that much attention is needed 

on the significant factors for better engine performance efficiency. The mathematical and graphical 

modeling of the overall engine performance were presented in this study. The modeling showed 

the efficacy of the design and analysis. Also, the interaction plots showed a broader detail of factor 

settings for better engine performance.  

References 

Abifarin, J. K. (2021). Taguchi grey relational analysis on the mechanical properties of natural hydroxyapatite: 
effect of sintering parameters. The International Journal of Advanced Manufacturing Technology, 117, 49–57. 
https://doi.org/10.1007/s00170-021-07288-9 

Abifarin, J. K., Fidelis, F. B., Abdulrahim, M. Y., Oyedeji, E. O., Nkwuo, T., & Prakash, C. (2022a). Response 
Surface Grey Relational Analysis On The Manufacturing of High Grade Biomedical Ti-13Zr-13Nb. 
Research Square. https://doi.org/10.21203/rs.3.rs-1225030/v1  

Abifarin, J. K., Obada, D. O., Dauda, E. T., & Oyedeji, E. O. (2021a). Taguchi grey relational optimization 
of the multi-mechanical characteristics of kaolin reinforced hydroxyapatite: effect of fabrication 
parameters. International Journal of Grey Systems, 1(2), 20-32. https://doi.org/10.52812/ijgs.30 

Abifarin, J. K., Prakash, C., & Singh, S. (2021b). Optimization and significance of fabrication parameters on 
the mechanical properties of 3D printed chitosan/PLA scaffold. Materials Today: Proceedings, 50 (Part 
5), 2018-2025. https://doi.org/10.1016/j.matpr.2021.09.386 

Abifarin, J. K., Suleiman, M. U., Abifarin, E. A., Fidelis, F. B., Oyelakin, O. K., Jacob, D. I., & Abdulrahim, 
M. Y. (2022b). Fabrication of mechanically enhanced hydroxyapatite scaffold with the assistance of 
numerical analysis. The International Journal of Advanced Manufacturing Technology, 118, 3331–3344. 
https://doi.org/10.1007/s00170-021-08184-y 

Abu-Jrai, A., Rodríguez-Fernández, J., Tsolakis, A., Megaritis, A., Theinnoi, K., Cracknell, R. F., & Clark, R. 
H. (2009). Performance, combustion and emissions of a diesel engine operated with reformed EGR. 
Comparison of diesel and GTL fuelling. Fuel, 88(6), 1031-1041. 
https://doi.org/10.1016/j.fuel.2008.12.001 

Arbab, M. I., Masjuki, H. H., Varman, M., Kalam, M. A., Imtenan, S., & Sajjad, H. (2013). Fuel properties, 
engine performance and emission characteristic of common biodiesels as a renewable and sustainable 
source of fuel. Renewable and Sustainable Energy Reviews, 22, 133-147. 
https://doi.org/10.1016/j.rser.2013.01.046 

Awodi, E., Ishiaku, U. S., Yakubu, M. K., & Abifarin, J. K. (2021). Experimentally Predicted Optimum 
Processing Parameters Assisted by Numerical Analysis on the Multi-physicomechanical Characteristics 
of Coir Fiber Reinforced Recycled High Density Polyethylene Composites. Research Square. 
https://doi.org/10.21203/rs.3.rs-591200/v1  

Hamzaçebi, C., & Pekkaya, M. (2011). Determining of stock investments with grey relational analysis. Expert 
Systems with Applications, 38(8), 9186-9195. https://doi.org/10.1016/j.eswa.2011.01.070 

Javed, S. A. (2019). A novel research on grey incidence analysis models and its application in project 
management (PhD dissertation).  Nanjing University of Aeronautics and Astronautics. Nanjing, PR China. 

Javed, S. A., Khan, A. M., Dong, W., Raza, A., & Liu, S. (2019). Systems evaluation through new grey 
relational analysis approach: an application on thermal conductivity—petrophysical parameters’ 
relationships. Processes, 7(6), 348. https://doi.org/10.3390/pr7060348 

Julong, D. (1989). Introduction to Grey System Theory. The Journal of Grey System, 1(1), 1-24. 
Kalam, M. A., Masjuki, H. H., Jayed, M. H., & Liaquat, A. M. (2011). Emission and performance 

characteristics of an indirect ignition diesel engine fuelled with waste cooking oil. Energy, 36(1), 397-
402. https://doi.org/10.1016/j.energy.2010.10.026 



International Journal of Grey Systems: Vol. 2, No. 1 Abifarin & Ofodu (2022)  

26 

 

Koten, H., Yilmaz, M., & Zafer Gul, M. (2014). Compressed biogas-diesel dual-fuel engine optimization 
study for ultralow emission. Advances in Mechanical Engineering, 6, 571063. 
https://doi.org/10.1155/2014/571063 

Leung, D. Y., Luo, Y., & Chan, T. L. (2006). Optimization of exhaust emissions of a diesel engine fuelled 
with biodiesel. Energy & Fuels, 20(3), 1015-1023. https://doi.org/10.1021/ef050383s 

Li, L., Wang, J., Wang, Z., & Liu, H. (2015). Combustion and emissions of compression ignition in a direct 
injection diesel engine fueled with pentanol. Energy, 80, 575-581. 
https://doi.org/10.1016/j.energy.2014.12.013 

Li, X., Wang, Z., Zhang, L., Zou, C., & Dorrell, D. D. (2019). State-of-health estimation for Li-ion batteries 
by combing the incremental capacity analysis method with grey relational analysis. Journal of Power 
Sources, 410, 106-114. https://doi.org/10.1016/j.jpowsour.2018.10.069 

Lin, L., Cunshan, Z., Vittayapadung, S., Xiangqian, S., & Mingdong, D. (2011). Opportunities and challenges 
for biodiesel fuel. Applied Energy, 88(4), 1020-1031. https://doi.org/10.1016/j.apenergy.2010.09.029 

Mahmoudi, A., Javed, S. A., Liu, S., & Deng, X. (2020). Distinguishing coefficient driven sensitivity analysis 
of GRA model for intelligent decisions: application in project management. Technological and Economic 
Development of Economy, 26(3), 621-641. https://doi.org/10.3846/tede.2020.1189  

Manigandan, S., Atabani, A. E., Ponnusamy, V. K., Pugazhendhi, A., Gunasekar, P., & Prakash, S. (2020). 
Effect of hydrogen and multiwall carbon nanotubes blends on combustion performance and emission 
of diesel engine using Taguchi approach. Fuel, 276, 118120. 
https://doi.org/10.1016/j.fuel.2020.118120 

Masoudi, N., & Zaccour, G. (2017). Adapting to climate change: Is cooperation good for the environment?. 
Economics Letters, 153, 1-5. https://doi.org/10.1016/j.econlet.2017.01.018 

Ofodu, J. C. & Abifarin, J. K. (2022). Employment of probability based multi-response optimization in high 
voltage thermofluids. Military Technical Courier, 70(2), 393-408. https://doi.org/10.5937/vojtehg70-
35764 

Oparanti, S. O., Abdelmalik, A. A., Khaleed, A. A., Abifarin, J. K., Suleiman, M. U., & Oteikwu, V. E. (2022). 
Synthesis and characterization of cooling biodegradable nanofluids from non-edible oil for high 
voltage application. Materials Chemistry and Physics, 277, 125485. 
https://doi.org/10.1016/j.matchemphys.2021.125485 

Prabhu, A., & Ramanan, M. V. (2020). Emission and performance analysis of pentanol-diesel blends in 
unmodified diesel engine. International Journal of Ambient Energy, 41(6), 699-702. 
https://doi.org/10.1080/01430750.2018.1490356 

Ramachander, J., Gugulothu, S. K., Sastry, G. R. K., Panda, J. K., & Surya, M. S. (2021). Performance and 
emission predictions of a CRDI engine powered with diesel fuel: A combined study of injection 
parameters variation and Box-Behnken response surface methodology based optimization. Fuel, 290, 
120069. https://doi.org/10.1016/j.fuel.2020.120069 

Ren, Y., Huang, Z., Miao, H., Di, Y., Jiang, D., Zeng, K., ... & Wang, X. (2008). Combustion and emissions 
of a DI diesel engine fuelled with diesel-oxygenate blends. Fuel, 87(12), 2691-2697. 
https://doi.org/10.1016/j.fuel.2008.02.017 

Senthilkumar, S., Karthick, A., Madavan, R., Moshi, A. A. M., Bharathi, S. S., Saroja, S., & Dhanalakshmi, C. 
S. (2021). Optimization of transformer oil blended with natural ester oils using Taguchi-based grey 
relational analysis. Fuel, 288, 119629. https://doi.org/10.1016/j.fuel.2020.119629 

Sivaramakrishnan, K., & Ravikumar, P. (2014). Optimization of operational parameters on performance and 
emissions of a diesel engine using biodiesel. International Journal of Environmental Science and Technology, 
11(4), 949-958. https://doi.org/10.1007/s13762-013-0273-5 

Taguchi, G., & Phadke, M. S. (1989). Quality engineering through design optimization. In Quality Control, 
Robust Design, and the Taguchi Method (pp. 77-96). Springer, Boston, MA. https://doi.org/10.1007/978-
1-4684-1472-1_5 

Taguchi, G., Chowdhury, S., Wu, Y., Taguchi, S., & Yano, H. (2005). Taguchi's Quality Engineering Handbook. 
Wiley-Interscience. 

Taguchi, G., Wu, Y., & Chodhury, S. (2000). Mahalanobis-Taguchi System. McGraw-Hill Professional. 
Taufiqurrahmi, N., & Bhatia, S. (2011). Catalytic cracking of edible and non-edible oils for the production of 

biofuels. Energy & Environmental Science, 4(4), 1087-1112. https://doi.org/10.1039/C0EE00460J 
Tosun, N. (2006). Determination of optimum parameters for multi-performance characteristics in drilling by 

using grey relational analysis. The International Journal of Advanced Manufacturing Technology, 28(5), 450-455. 
https://doi.org/10.1007/s00170-004-2386-y 

Wallington, T. J., Lambert, C. K., & Ruona, W. C. (2013). Diesel vehicles and sustainable mobility in the US. 
Energy Policy, 54, 47-53. https://doi.org/10.1016/j.enpol.2011.11.068 

Wu, Y., Zhou, F., & Kong, J. (2020). Innovative design approach for product design based on TRIZ, AD, 
fuzzy and Grey relational analysis. Computers & Industrial Engineering, 140, 106276. 
https://doi.org/10.1016/j.cie.2020.106276 

 


