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Abstract: The rapid expansion of digital infrastructure presents significant forecasting and strategic planning 

challenges for investors and corporate decision-makers. This study applies the DGM (1,1,α) grey forecasting 

model to project the growth of four critical variables to 2030: global network traffic, data creation, data centre 

supply, and data centre demand, using secondary data. The model demonstrates high in-sample accuracy, with 

Mean Absolute Percentage Errors (MAPE) below 1.35%. A comparative analysis with industry benchmarks 

reveals strong alignment, validating the model's robustness. Key findings project sustained near-exponential 

growth and a critical narrowing of the global supply-demand margin. The results highlight impending market 

tightness and provide a quantitative framework for strategic capacity planning, capital allocation, and risk 

mitigation in the digital infrastructure sector, directly supporting data-driven management science applications. 
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1. Introduction 

The global digital infrastructure landscape is undergoing unprecedented transformation, driven 

by the convergence of artificial intelligence, ubiquitous cloud computing, and evolving data 

governance frameworks (Nookala, 2024). As society becomes increasingly data-centric, the physical 

and logical foundations that support digital activities—particularly data centers and the networks 

that interconnect them—have emerged as critical determinants of economic competitiveness, 

innovation capacity, and national security (Shukla et al., 2023). Understanding the future trajectory 

of these infrastructures is not merely an academic exercise but a strategic imperative for 

policymakers, investors, and technology leaders. 

However, forecasting in this domain presents significant challenges. Digital infrastructure 

evolution is influenced by a complex interplay of technological breakthroughs, regulatory shifts, 

market dynamics, and societal adoption patterns (Tilson et al., 2010). Traditional forecasting 

methods, which often rely on large historical datasets and linear assumptions, may struggle to 

capture the disruptive, non-linear growth characteristics typified by phenomena such as the 

generative AI explosion or the rapid decentralization of computing through edge architectures 

(Bunn, 1996; Armstrong, 2001). In such environments, the Grey System Theory – and specifically 
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the DGM (1,1,α) model – offers a valuable methodological alternative (Javed & Cudjoe, 2022). 

Designed to generate reliable forecasts with limited data and under conditions of uncertainty, grey 

modeling is particularly well-suited to analyzing emerging, high-growth sectors where historical 

series are short and future trends are inherently ambiguous. 

This study applies the DGM (1,1,α) forecasting model to four pivotal indicators extracted from 

the Global Data Centre Insights 2024 report (Sanger & Sriram, 2024), each representing a core 

dimension of digital infrastructure scale and velocity: (a) Global annual network traffic data, (b) 

Annual global data creation (in zettabytes), (c) Global data center supply (in gigawatts), and (d) 

Global data center demand (in gigawatts). These variables collectively capture the digital 

ecosystem's intensity: data generation fuels network traffic, which in turn drives demand for 

processing and storage capacity, necessitating commensurate investments in physical 

infrastructure. By projecting these metrics through 2030, this research aims to quantify anticipated 

growth pathways, assess potential imbalances between supply and demand, and illuminate the 

systemic pressures that may shape the next phase of digital expansion. 

The analysis not only provides actionable forecasts for stakeholders but also demonstrates the 

applicability of grey system models in infrastructure economics. In doing so, it contributes to a 

more nuanced understanding of how digital capabilities scale, where bottlenecks may arise, and 

how strategic planning can adapt to a future defined by exponential data growth and computational 

demand. In the succeeding section first, we will review the relevant literature, and then data 

collection and analyses methods will be introduced. Later, results and important findings will be 

discussed. In the end, the study will be concluded with some important recommendations. 

2. Literature review 

2.1 Role of Digital Infrastructure in the Modern Economy 

Digital infrastructure, encompassing data centers, fiber optic networks, and cloud platforms, has 

evolved from a supportive utility to a core driver of global economic activity and innovation. 

Scholarly consensus positions it as a critical form of 21st-century capital, essential for productivity, 

competitiveness, and societal function (Hussain, 2024). The rise of data-intensive paradigms – 

including big data analytics, the Internet of Things (IoT), and artificial intelligence – has 

exponentially increased dependence on reliable, scalable, and low-latency computational resources 

(Al-Atroshi & Zeebaree, 2024). This dependency frames data centers not merely as real estate assets 

but as the brains of the digital economy, where the physical and virtual worlds converge (Maak, 

2022). 

Concurrently, regulatory landscapes are shaping infrastructure geography. The proliferation of 

data sovereignty laws (e.g., General Data Protection Regulation in Europe, various national data 

localization policies) necessitates in-country or in-region data storage, fragmenting global cloud 

architectures and spurring localized infrastructure investment (TOI, 2025; Olorunlana, 2025). This 

tension between globally scaled technology platforms and nationally bounded regulatory regimes 

forms a key dynamic in infrastructure planning and investment thesis development, as noted by 

Sanger and Sriram (2024), which highlights it as a secular growth driver. 

2.2 Forecasting Challenges in a High-Velocity Sector 

Accurately forecasting the growth of digital infrastructure is a complex issue. Traditional 

econometric models, which often rely on long-term historical data and assumptions of linearity or 

stable cyclicality, are frequently ill-suited to a sector characterized by disruptive technological 

shocks and exponential growth patterns (Graf, 2002; Moshiri & Cameron, 2000). For instance, the 

advent of generative AI has abruptly recalibrated projections for compute density and power 

consumption, a phenomenon poorly captured by trend extrapolation (Tsai et al., 2023). 

Academic and industry forecasts typically employ a mix of methods: (a) Top-down models 

extrapolate from macroeconomic indicators, e.g., internet penetration rates, and mobile 

subscription data (Nyman et al., 2014; Boamah, 2021); (b) Bottom-up models aggregate demand 
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forecasts from hyperscalers, e.g., enterprise IT budgets, and specific application workloads (Duarte 

& Rua, 2007); (c) Technology adoption curves (e.g., Bass diffusion models) are used to model the 

uptake of cloud services or IoT devices (Daim & Suntharasaj, 2009). 

However, these approaches often struggle with the rapid convergence of technologies, especially 

in uncertain environments. The inherent uncertainty and limited length of reliable, high-frequency 

time-series data for nascent trends (like AI workload power demand) create a significant forecasting 

gap (Makridakis et al., 2018; Mossavar-Rahmani & Zohuri, 2025). This gap necessitates alternative 

modeling philosophies that can produce robust insights from sparse data. 

2.3 Grey Forecasting 

Grey System Theory, pioneered by Ju-long (1982), was developed explicitly to study systems 

with partial information, where some system parameters are known and others are unknown. It is 

distinguished from "black box" models (where internal mechanics are entirely unknown) and 

"white box" models (where all information is clear). The core strength of grey models lies in their 

ability to generate credible forecasts with as few as four data points, making them invaluable for 

analyzing emerging trends (Wang & Wang, 2025). 

The foundational grey forecasting model is GM(1,1), a first-order, single-variable differential 

equation model. Its derivative, DGM (1,1) (Discrete Grey Model), and its optimized versions like 

DGM (1,1,α), which introduces a dynamic background coefficient, offer improved fitting accuracy 

and stability, especially for sequences with nonlinear growth characteristics (Javed et al., 2025). 

These models have been successfully applied across diverse fields facing data scarcity. For instance, 

Ouali et al. (2024) used a grey forecasting model to forecast the growth in mobile cellular 

subscriptions and secure internet servers in the U.S.A. and China. Cudjoe et al. (2023) used a grey 

forecasting model to forecast annual plastic waste in China. Pandey et al. (2023) used a grey 

forecasting model to predict non-renewable and renewable energy production in India. Podrecca 

and Sartor (2023) used grey forecasting models to forecast the diffusion of ISO/IEC 27001 

certifications in the world.  The grey forecasting models usually involves data sequence processing, 

model construction, parameter estimation, and forecast accuracy measurement (often using metrics 

like Mean Absolute Percentage Error) (Rajesh, 2025). Its procedural rigor and flexibility have 

cemented its role in the forecaster's toolkit for uncertain environments.  

While the grey system models are well-established in forecasting energy demand (Tian et al., 

2021) and industrial outputs (Wang & Hsu, 2008), their application to the forecasting of digital 

infrastructure capacity remains under-explored in academic literature (Ouali et al., 2024). A 

systematic, model-driven examination of the interlinked growth trajectories of data creation, 

network traffic, data center supply, and data center demand – using a robust small-data method 

like DGM(1,1,α) – is not evident in the current body of research. Studies that have been conducted 

often rely on proprietary models or inaccessible data sources (see, e.g., Sanger & Sriram, 2024). The 

current study will fill this gap by bringing methodological rigor and transparency to the strategic 

forecasting of digital infrastructure 

3. Research methodology 

3.1 Data Collection 

This study employs a data-driven quantitative forecasting approach centered on the DGM(1,1,α) 

model. The research process followed four structured phases: The first phase involved data 

collection and variable selection. Historical data for the four key variables (2019-2023/2024) was 

extracted from the Global Data Centre Insights 2024 report (Sanger & Sriram, 2024). These 

variables were selected for their foundational role in quantifying digital ecosystem scale and 

interlinked growth. The second phase was about the application of the model on this data. The 

DGM (1,1,α) model was chosen for its proven efficacy in forecasting with small, non-linear 

datasets. Each time series was independently modeled. The α parameter was computationally 

optimized for each variable to minimize fitting error, capturing unique growth dynamics. The third 
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phase involved, forecast generation and validation. The fitted models were used to generate 

forecasts for 2024/2025-2030. In-sample model accuracy was rigorously validated by calculating 

the Mean Absolute Percentage Error (MAPE) between the model's fitted values and the actual 

historical data. The last phased involves comparative analysis and interpretation. To ground the 

analysis in a business context, the 2024-2027 forecasts were compared to independent projections 

from the GDCI 2024 report. The MAPE was calculated for this comparison period to quantify 

alignment and divergence, forming the basis for a discussion on strategic implications and market 

dynamics.  

3.2 Optimized Discrete Grey Model of Forecasting 

DGM (1,1,α) is the generalized form of DGM (1,1), which was developed by Xie and Liu (2009). 

DGM (1,1,α) was proposed by Javed and Cudjoe (2022). First of all, the Posterior Variance Test 

(Javed, 2023) was used for ex-ante evaluation of the forecasting models. Once, the test was passed 

by the model, it was applied using the following steps. Let the sequence of actual data is 

𝑋(0) = (𝑥(0)(1), 𝑥(0)(2),… 𝑥(0)(𝑛)) , 𝑥(0)(𝑘) ≥ 0 (1) 

and the sequence of conformable fractional accumulated data of X(0) is 

𝑋(𝛼) = (𝑥(𝛼)(1), 𝑥(𝛼)(2), … 𝑥(𝛼)(𝑛)) (2) 

where, 𝑥(𝛼)(𝑘) = ∑ (
𝑥(0)(𝑖)

𝑖1−𝛼
)𝑘

𝑖=1 , 𝑘 = 1,2,… , 𝑛 , for 𝛼 ∈ (0,1]. The discrete form of GM(1,1) 

with parameters 𝛽1 and 𝛽2, will be defined as 

𝑥(𝛼)(𝑘 + 1) = 𝛽1𝑥
(𝛼)(𝑘) + 𝛽2 (3) 

 

where 𝛽1 and 𝛽2 can be estimated through the Least Square method i.e., 

𝛽̂ = [ 𝛽1, 𝛽2]
𝑇 = [𝐵𝑇𝐵]−1𝐵𝑇𝑌 (4) 

where, 

𝐵 =  

[
 
 
 
𝑥(𝛼)(1) 1

𝑥(𝛼)(2) 1
⋮ ⋮

𝑥(𝛼)(𝑛 − 1) 1]
 
 
 

     and      𝑌 =  

[
 
 
 

 

𝑥(𝛼)(2)

𝑥(𝛼)(3)
⋮

𝑥(𝛼)(𝑛)]
 
 
 

 

The time response function of the grey model is expressed as 

𝑥(𝛼)(𝑘) = 𝛽1
𝑘 (𝑥(0)(1) −

𝛽2
1 − 𝛽1

 ) +
𝛽2

1 − 𝛽1
   , 𝑘 = 2, 3 … , 𝑛 

(5) 

The inverse conformable fractional accumulation is given by, 

𝑥(0)(𝑘) = 𝑘1−𝛼 (𝑥(𝛼)(𝑘) − 𝑥(𝛼)(𝑘 − 1)) , 𝑘 = 1,2,… , 𝑛; 𝑥(0)(0) = 0   (6) 

The time-response function of 𝑋(0) is given by 

𝑥(0)(𝑘) = 𝑘1−𝛼(𝛽1 − 1) (𝑥
(0)(1) −

𝛽2
1 − 𝛽1

 ) 𝛽1
𝑘−1 , 𝑘 = 2,3,… , 𝑛 

(7) 

whereas, 𝑥(0)(1) = 𝑥(𝛼)(1) = 𝑥(0)(1). For the complete detail on the model, its parameters, and 

properties, Javed and Cudjoe (2022) should be referred to. 
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3.2 Mean Absolute Percentage Error 

The Mean Absolute Percentage Error (MAPE) is a widely used statistical measure of forecast 

accuracy. It calculates the average absolute percentage difference between forecasted values and 

actual observed values. A lower MAPE indicates a more accurate forecasting model. In this study, 

MAPE serves two critical purposes: first, to validate the in-sample fit of the DGM (1,1,α) model 

against historical data, where low values confirm model reliability; and second, to quantitatively 

compare our model's out-of-sample forecasts with an independent industry benchmark (GDCI 

2024), providing a standardized metric to assess consensus or divergence in future outlooks. Its 

interpretation as a percentage makes it intuitively valuable for managerial decision-making, clearly 

communicating the magnitude of forecast error. The MAPE (%) is given by (Javed & Cudjoe, 

2020), 

𝑀𝐴𝑃𝐸(%) =
1

𝑛
×∑ |

𝑥(𝑘) − 𝑥(𝑘)

𝑥(𝑘)
| × 100

𝑛

𝑘=1

  

where 𝑥(𝑘) and 𝑥(𝑘) are indicative of both observe and simulate (forecast) values obtained 

through the model. According to the scale proposed by Javed and Cudjoe (2020), a MAPE (%) of 

less than 20% reflects a good prediction: 

𝑀𝐴𝑃𝐸(%) =

{
 

 
 < 10          𝐻𝑖𝑔ℎ𝑙𝑦 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

10~20                        𝐺𝑜𝑜𝑑 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 
20~30             𝑅𝑒𝑎𝑠𝑜𝑛𝑎𝑏𝑙𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡
> 30                𝐼𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

  

4. Results 

4.1 Model Performance and Forecast Accuracy 

The application of the DGM (1,1,α) model to the four key digital infrastructure variables yielded 

forecasts with high statistical accuracy. The in-sample MAPE for the period 2019-2023/2024 was 

exceptionally low for all variables: 0.067% for global network traffic, 1.341% for global data 

created, 0.118% for data centre supply, and 0.122% for data centre demand (see Tables 1 and 2). 

These results confirm the model's robust fit to the historical data, validating its use for forward 

projection. The model's inherent strength in handling small, non-linear datasets is clearly 

demonstrated, with the optimized α parameter successfully capturing the unique growth dynamics 

of each series. 

A critical comparison was made between the forecasts generated by our DGM (1,1,α) model 

(hereafter "model estimates") and the independent projections for 2024-2027 published in the 

Global Data Centre Insights 2024 report ("GDCI estimates"). The MAPE for this out-of-sample 

comparison period reveals a close but nuanced alignment between the two forecasting sources. 

The forecasts for Global Data Created showed the strongest agreement (MAPE = 1.51%), 

indicating a high degree of consensus on the trajectory of data generation. Forecasts for Global 

Data Centre Demand also aligned well (MAPE = 3.45%). Slightly larger, yet still reasonable, 

divergences were observed for Global Network Traffic (MAPE = 4.55%) and Global Data Centre 

Supply (MAPE = 5.09%). These variances likely stem from differences in methodological 

approach; while our model extrapolates purely from the historical time series, the GDCI estimates 

likely incorporate proprietary market intelligence, granular capacity pipelines, and qualitative 

assessments of investment plans. 

4.2 Analysis of Projections and Growth Dynamics 

The forecast results from both our model and the GDCI report paint a picture of sustained, 

robust growth across all four metrics through 2027 and beyond. The estimated α parameters 
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Table 1. The forecasting of Network Traffic Data and Global Data Created 

 Global network traffic dataa Global Data Created (ZB)b 

  Actual data DGM (1,1,α) GDCIc Actual data DGM (1,1,α) GDCIc 

2019 100 100   41 41   

2020 150 150   64 64   

2021 199 199   79 80   

2022 253 253   97 99   

2023 316 316   125 121   

2024   388 393 147 149   

2025   473 492   182 181 

2026   572 610   223 222 

2027   689 741   273 282 

2028   826     333   

2029   986     407   

2030   1174     496   

α   0.664     0.935   

MAPE (%) in-sample   0.067%     1.341%   

MAPE (%) – benchmarkd     4.55%     1.51% 
a Indexed as of 2019, i.e., the value for 2019 is set to 100 and subsequent years show growth relative to 2019. 
b Zettabytes 
c The GDCI estimates are from Sanger and Sriram (2024). 
d MAPE (%) with respect to industry benchmarks i.e., the GDCI estimates. 

 
Table 2. The forecasting of global data centre supply and demand 

  Global Data Centre Supply (GW)e Global Data Centre Demand (GW)e 

  Actual data DGM (1,1,α) GDCI Actual data DGM (1,1,α) GDCI 

2019 21.2 21.2   18.4 18.4   

2020 24.0 24.0   20.9 20.9   

2021 27.0 27.1   23.8 23.8   

2022 30.6 30.6   27.0 27.0   

2023 34.5 34.5   30.5 30.6   

2024 38.9 38.9   34.7 34.6   

2025 
 

43.9 45.1 
 

39.2 39.8 

2026 
 

49.6 52.2 
 

44.4 46.0 

2027 
 

56.0 60.6 
 

50.2 53.1 

2028 
 

63.2   
 

56.8   

2029 
 

71.3   
 

64.2   

2030 
 

80.5   
 

72.6   

α   1.00     0.981   

MAPE (%) in-sample   0.118%     0.122%   

MAPE (%) - benchmark     5.09%     3.45% 
e Gigawatts  

 

provide insight into the nature of this growth: (a) Network Traffic (α=0.664) and Data Created 

(α=0.935) exhibit α values significantly below 1, indicative of a growth pattern that is strong but 

gradually decelerating from a previously super-exponential phase. This suggests a maturation of 

the underlying drivers, though from a very high baseline. (2) Data Centre Supply (α=1.00) and 

Demand (α=0.981) have α values very close to 1, signaling near-exponential, constant-rate growth. 

This reflects the capital-intensive, project-led nature of infrastructure deployment, which is 

struggling to accelerate further due to the significant barriers to entry outlined in the GDCI report 

(e.g., supply chain, power, permitting). The analyses are shown in Figures 1 and 2. 

A pivotal finding for strategic planning is the erosion of the relative supply buffer. While the 

absolute difference between supply and demand (in GW) increases, the growth rate of demand is 

so rapid that the surplus as a percentage of total market demand is projected to shrink. This buffer 

decreases from ~15% (=
21.2−18.4

18.4
) in 2019 to ~11% (=

80−73

73
) by 2030 in our model, with the 

GDCI 2027 estimate showing a similar compression to ~14% (=
60.6−53.1

53.1
). From a management 

perspective, this shrinking percentage buffer is what signals tightening market conditions. A 7 GW 

surplus in a 73 GW market (2030) represents a much leaner cushion against demand shocks or 

supply delays than a 2.8 GW surplus in an 18.4 GW market (2019). While the absolute surplus in  
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Fig 1. The projections of Network Traffic Data and Global Data Created 

 

  

Fig 2. The forecasting of global data centre supply and demand projections 

 

GW grows, the buffer ratio (or reserve margin) shrinks because demand grows even faster.  It 

indicates reduced slack in the system, leading to decreased tenant bargaining power, reduced 

flexibility for operators, and the potential for localized shortages even while a global aggregate 

surplus exists. This perfectly aligns with observable market phenomena like rising lease rates and 

longer lead times (McKinsey, 2024). 

Furthermore, the growth rate of Data Created is forecasted to outpace that of Data Centre 

Supply & Demand in the long-term model projection. This implies an increasing "density" of 

storage and computation, where more data must be processed, stored, or discarded per unit of 

available infrastructure power. This trend directly supports the industry shift towards higher rack 

densities, advanced cooling solutions, and efficiency gains driven by AI and specialized hardware. 

4.3 Implications 

The analysis confirms that the global digital infrastructure ecosystem is on a steep, non-linear 

growth trajectory. The strong performance of the DGM(1,1,α) model validates Grey System 

Theory as a potent tool for forecasting in this data-limited, high-uncertainty domain. The minor 

discrepancies between the model estimates and the GDCI estimates highlight different forecasting 

philosophies while converging on the central trend of robust growth. 

The most significant finding for strategic management is the projected compression of the 

supply buffer. While the absolute difference between supply and demand (in GW) increases, the 

buffer ratio—the surplus expressed as a percentage of total demand—is forecasted to shrink from 

approximately 15% in 2019 to about 10% by 2030. This indicates that the system's effective slack 

is diminishing relative to its scale. This erosion of the relative buffer has direct and meaningful 

business implications: (a) A tighter buffer means less immediately available capacity in the market. 
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Tenants, especially those with urgent or large-scale requirements, lose leverage, which manifests in 

rising lease rates and stricter contract terms. (b) The shrinking cushion amplifies the risk of missing 

capacity needs due to lead times (2-4 years for new builds). Companies must shift from just-in-time 

procurement to strategic, long-term capacity planning and reservation. (c) A 10% buffer provides 

significantly less protection against a sudden demand surge (e.g., from a new AI model rollout) 

than a 15% buffer does in a smaller market. This increases systemic risk and volatility. (d) This 

quantitative projection of buffer compression directly explains the observable industry phenomena 

cited in reports: prolonged lead times, rising costs, and concerns over future shortages, even while 

aggregated global numbers show a surplus. Therefore, for stakeholders, the primary takeaway is 

not an imminent global shortage, but a strategic transition into a market with thinning margins for 

error. This environment prioritizes those who secure capacity early, invest in efficiency to do more 

with less, and build flexible partnerships within the infrastructure value chain. 

The convergence of the forecasts on key points—especially the tightening supply-demand 

balance—is a critical takeaway. It signals that current investment levels, while record-breaking, may 

still be insufficient to meet the wave of demand fueled by AI and broad digital transformation. The 

projected growth differential between data creation and physical capacity further highlights the 

urgent need for technological innovation in compute efficiency, not just in capacity expansion. For 

stakeholders, these results underscore the strategic importance of securing long-term capacity, 

investing in next-generation cooling and power efficiency, and closely monitoring the lead 

indicators of supply chain and energy grid constraints. 

5. Conclusion  

This study demonstrates the efficacy of grey forecasting as a strategic tool for navigating the 

high-growth, high-uncertainty digital infrastructure sector. By applying the DGM(1,1,α) model, we 

have generated robust projections for core market metrics, validating the model's accuracy against 

historical data and benchmarking its output against leading industry analysis. The central, 

managerially significant finding is not merely the confirmation of strong growth, but the 

identification of a critical shift in market structure: a pronounced compression of the global supply 

buffer. While absolute capacity continues to expand, the surplus relative to total demand is 

projected to shrink considerably, signaling a transition towards a tighter, less forgiving market 

environment. 

This erosion of the relative safety margin has immediate implications for corporate strategy. For 

enterprise consumers of data center services, it heralds an end to the era of easily scalable, cost-

flexible capacity procurement. The foreseeable future will be characterized by rising costs, longer 

planning horizons, and increased negotiation leverage for providers. Consequently, strategic 

planning must now prioritize long-term capacity security and supply chain resilience over short-

term cost optimization. Proactive portfolio management, involving a mix of geographic 

diversification and forward-leasing, becomes a competitive necessity to mitigate operational risk. 

For investors and operators, the converging trends point to a landscape where competitive 

advantage will be determined by efficiency and strategic execution. Capital allocation must 

increasingly favor assets and technologies that deliver higher power density and superior energy 

efficiency, as these attributes will command premium pricing and tenant loyalty in a constrained 

environment. Furthermore, the business model is evolving from pure asset ownership to one of 

integrated partnership, requiring operators to develop deeper technical and financial collaboration 

with major hyperscale tenants to secure large-scale, built-to-suit projects. 

Ultimately, this analysis provides a quantitative foundation for a paradigm shift in managerial 

thinking. Treating digital infrastructure as a stable utility is no longer tenable. Instead, it must be 

recognized as a dynamic, strategic factor of production subject to tightening constraints. Success 

will depend on an organization’s ability to incorporate forward-looking, non-linear forecasting into 

its strategic foresight, enabling proactive adaptation to the impending capacity crunch. The 

actionable insight is clear: in the coming decade, strategic foresight and early commitment will be 
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far more valuable than reactive negotiation in securing the foundational compute resources that 

underpin modern enterprise.  
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