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Abstract: The rapid expansion of digital infrastructure presents significant forecasting and strategic planning
challenges for investors and corporate decision-makers. This study applies the DGM (1,1,&) grey forecasting
model to project the growth of four critical variables to 2030: global network traffic, data creation, data centre
supply, and data centre demand, using secondary data. The model demonstrates high in-sample accuracy, with
Mean Absolute Percentage Errors (MAPE) below 1.35%. A comparative analysis with industry benchmarks
reveals strong alignment, validating the model's robustness. Key findings project sustained neat-exponential
growth and a critical narrowing of the global supply-demand margin. The results highlight impending market
tightness and provide a quantitative framework for strategic capacity planning, capital allocation, and risk
mitigation in the digital infrastructure sector, directly supporting data-driven management science applications.
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1. Introduction

The global digital infrastructure landscape is undergoing unprecedented transformation, driven
by the convergence of artificial intelligence, ubiquitous cloud computing, and evolving data
governance frameworks (Nookala, 2024). As society becomes increasingly data-centric, the physical
and logical foundations that support digital activities—particularly data centers and the networks
that interconnect them—have emerged as critical determinants of economic competitiveness,
innovation capacity, and national security (Shukla ez 4/, 2023). Understanding the future trajectory
of these infrastructures is not merely an academic exercise but a strategic imperative for
policymakers, investors, and technology leaders.

However, forecasting in this domain presents significant challenges. Digital infrastructure
evolution is influenced by a complex interplay of technological breakthroughs, regulatory shifts,
market dynamics, and societal adoption patterns (Tilson ¢z al., 2010). Traditional forecasting
methods, which often rely on large historical datasets and linear assumptions, may struggle to
capture the disruptive, non-linear growth characteristics typified by phenomena such as the
generative Al explosion or the rapid decentralization of computing through edge architectures
(Bunn, 1996; Armstrong, 2001). In such environments, the Grey System Theory — and specifically
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the DGM (1,1,a) model — offers a valuable methodological alternative (Javed & Cudjoe, 2022).
Designed to generate reliable forecasts with limited data and under conditions of uncertainty, grey
modeling is particularly well-suited to analyzing emerging, high-growth sectors where historical
series are short and future trends are inherently ambiguous.

This study applies the DGM (1,1,a) forecasting model to four pivotal indicators extracted from
the Global Data Centre Insights 2024 report (Sanger & Sriram, 2024), each representing a core
dimension of digital infrastructure scale and velocity: (a) Global annual network traffic data, (b)
Annual global data creation (in zettabytes), (c) Global data center supply (in gigawatts), and (d)
Global data center demand (in gigawatts). These variables collectively capture the digital
ecosystem's intensity: data generation fuels network traffic, which in turn drives demand for
processing and storage capacity, mnecessitating commensurate investments in physical
infrastructure. By projecting these metrics through 2030, this research aims to quantify anticipated
growth pathways, assess potential imbalances between supply and demand, and illuminate the
systemic pressutes that may shape the next phase of digital expansion.

The analysis not only provides actionable forecasts for stakeholders but also demonstrates the
applicability of grey system models in infrastructure economics. In doing so, it contributes to a
more nuanced understanding of how digital capabilities scale, where bottlenecks may arise, and
how strategic planning can adapt to a future defined by exponential data growth and computational
demand. In the succeeding section first, we will review the relevant literature, and then data
collection and analyses methods will be introduced. Later, results and important findings will be
discussed. In the end, the study will be concluded with some important recommendations.

2. Literature review

2.1 Role of Digital Infrastructure in the Modern Economy

Digital infrastructure, encompassing data centers, fiber optic networks, and cloud platforms, has
evolved from a supportive utility to a core driver of global economic activity and innovation.
Scholatly consensus positions it as a critical form of 21st-century capital, essential for productivity,
competitiveness, and societal function (Hussain, 2024). The rise of data-intensive paradigms —
including big data analytics, the Internet of Things (IoT), and artificial intelligence — has
exponentially increased dependence on reliable, scalable, and low-latency computational resources
(Al-Atroshi & Zeebaree, 2024). This dependency frames data centers not merely as real estate assets
but as the brains of the digital economy, where the physical and virtual worlds converge (Maak,
2022).

Concurrently, regulatory landscapes are shaping infrastructure geography. The proliferation of
data sovereignty laws (e.g., General Data Protection Regulation in Europe, various national data
localization policies) necessitates in-country or in-region data storage, fragmenting global cloud
architectures and spurring localized infrastructure investment (T'OI, 2025; Olorunlana, 2025). This
tension between globally scaled technology platforms and nationally bounded regulatory regimes
forms a key dynamic in infrastructure planning and investment thesis development, as noted by
Sanger and Sriram (2024), which highlights it as a secular growth driver.

2.2 Forecasting Challenges in a High-1"elocity Sector

Accurately forecasting the growth of digital infrastructure is a complex issue. Traditional
econometric models, which often rely on long-term historical data and assumptions of linearity or
stable cyclicality, are frequently ill-suited to a sector characterized by disruptive technological
shocks and exponential growth patterns (Graf, 2002; Moshiri & Cameron, 2000). For instance, the
advent of generative Al has abruptly recalibrated projections for compute density and power
consumption, a phenomenon poorly captured by trend extrapolation (Tsai et al., 2023).

Academic and industry forecasts typically employ a mix of methods: (a) Top-down models
extrapolate from macroeconomic indicators, e.g., internet penetration rates, and mobile
subscription data (Nyman ef /., 2014; Boamah, 2021); (b) Bottom-up models aggregate demand
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forecasts from hyperscalers, e.g., enterprise I'T budgets, and specific application workloads (Duarte
& Rua, 2007); (c) Technology adoption curves (e.g., Bass diffusion models) are used to model the
uptake of cloud services or IoT devices (Daim & Suntharasaj, 2009).

However, these approaches often struggle with the rapid convergence of technologies, especially
in uncertain environments. The inherent uncertainty and limited length of reliable, high-frequency
time-series data for nascent trends (like Al workload power demand) create a significant forecasting
gap (Makridakis ez a/, 2018; Mossavar-Rahmani & Zohuri, 2025). This gap necessitates alternative
modeling philosophies that can produce robust insights from sparse data.

2.3 Grey Forecasting

Grey System Theory, pioneered by Ju-long (1982), was developed explicitly to study systems
with partial information, where some system parameters are known and others are unknown. It is
distinguished from "black box" models (where internal mechanics are entirely unknown) and
"white box" models (where all information is clear). The core strength of grey models lies in their
ability to generate credible forecasts with as few as four data points, making them invaluable for
analyzing emerging trends (Wang & Wang, 2025).

The foundational grey forecasting model is GM(1,1), a first-order, single-variable differential
equation model. Its derivative, DGM (1,1) (Discrete Grey Model), and its optimized versions like
DGM (1,1,&), which introduces a dynamic background coefficient, offer improved fitting accuracy
and stability, especially for sequences with nonlinear growth characteristics (Javed e al, 2025).
These models have been successfully applied across diverse fields facing data scarcity. For instance,
Ouali ¢ al. (2024) used a grey forecasting model to forecast the growth in mobile cellular
subscriptions and secure internet servers in the U.S.A. and China. Cudjoe ¢ /. (2023) used a grey
forecasting model to forecast annual plastic waste in China. Pandey ef 2/ (2023) used a grey
forecasting model to predict non-renewable and renewable energy production in India. Podrecca
and Sartor (2023) used grey forecasting models to forecast the diffusion of ISO/IEC 27001
certifications in the world. The grey forecasting models usually involves data sequence processing,
model construction, parameter estimation, and forecast accuracy measurement (often using metrics
like Mean Absolute Percentage Error) (Rajesh, 2025). Its procedural rigor and flexibility have
cemented its role in the forecastet's toolkit for uncertain environments.

While the grey system models are well-established in forecasting energy demand (Tian ef al.,
2021) and industrial outputs (Wang & Hsu, 2008), their application to the forecasting of digital
infrastructure capacity remains under-explored in academic literature (Ouali er ok, 2024). A
systematic, model-driven examination of the interlinked growth trajectories of data creation,
network traffic, data center supply, and data center demand — using a robust small-data method
like DGM(1,1,o) — is not evident in the current body of research. Studies that have been conducted
often rely on proprietary models or inaccessible data sources (see, e.g., Sanger & Sriram, 2024). The
current study will fill this gap by bringing methodological rigor and transparency to the strategic
forecasting of digital infrastructure

3. Research methodology

3.1 Data Collection

This study employs a data-driven quantitative forecasting approach centered on the DGM(1,1,%)
model. The research process followed four structured phases: The first phase involved data
collection and vatiable selection. Historical data for the four key variables (2019-2023/2024) was
extracted from the Global Data Centre Insights 2024 report (Sanger & Sriram, 2024). These
variables were selected for their foundational role in quantifying digital ecosystem scale and
interlinked growth. The second phase was about the application of the model on this data. The
DGM (1,1,) model was chosen for its proven efficacy in forecasting with small, non-linear
datasets. Each time series was independently modeled. The « parameter was computationally
optimized for each variable to minimize fitting error, capturing unique growth dynamics. The third
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phase involved, forecast generation and validation. The fitted models were used to generate
forecasts for 2024/2025-2030. In-sample model accuracy was tigorously validated by calculating
the Mean Absolute Percentage Error (MAPE) between the model's fitted values and the actual
historical data. The last phased involves comparative analysis and interpretation. To ground the
analysis in a business context, the 2024-2027 forecasts were compared to independent projections
from the GDCI 2024 report. The MAPE was calculated for this comparison period to quantify
alignment and divergence, forming the basis for a discussion on strategic implications and market
dynamics.

3.2 Optimized Discrete Grey Model of Forecasting

DGM (1,1,0) is the generalized form of DGM (1,1), which was developed by Xie and Liu (2009).
DGM (1,1,&) was proposed by Javed and Cudjoe (2022). First of all, the Posterior Variance Test
(Javed, 2023) was used for ex-ante evaluation of the forecasting models. Once, the test was passed
by the model, it was applied using the following steps. Let the sequence of actual data is

X© = (x©@1), (), .. xO(n)),xO(k) = 0
and the sequence of conformable fractional accumulated data of X© jg
x(@ — (x(“)(l),x(“)(Z), x(“)(n))

x(o)(i)

il—a

where, x(D (k) = ¥k | (

with parameters f; and f,, will be defined as

),k =12,..,n, for a € (0,1]. The discrete form of GM(1,1)

x@(k +1) = gx D (k) + B,

where 81 and B, can be estimated through the Least Square method i.e.,

B =[P B]" = [B"B]'BTY

where,
x@@) 1 x(@(2)
p=| *@ 1| 4 y=|*“®
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The time response function of the grey model is expressed as

B2 B2
o(a) —p k(.00 —
¥ (k) =p; (xo(l) T 1)+1 - k=23 ..,n

The inverse conformable fractional accumulation is given by,
2O = k' (2@ (k) - 2@ (k- D), k=12,..,n; 29(0) =0

The time-response function of X © s given by
P
1-5h

whereas, £ (1) = x@ (1) = x@(1). For the complete detail on the model, its parameters, and
propetties, Javed and Cudjoe (2022) should be referred to.

2O = 1748 - 1) (xOW) - 72 ) BF T k=23,

16



International Journal of Grey Systems: 1'ol. 5, No. 2 Shinta & Hussain (2025)

3.2 Mean Absolute Percentage Error

The Mean Absolute Percentage Error (MAPE) is a widely used statistical measure of forecast
accuracy. It calculates the average absolute percentage difference between forecasted values and
actual observed values. A lower MAPE indicates a more accurate forecasting model. In this study,
MAPE serves two critical purposes: first, to validate the in-sample fit of the DGM (1,1,4) model
against historical data, where low values confirm model reliability; and second, to quantitatively
compare our model's out-of-sample forecasts with an independent industry benchmark (GDCI
2024), providing a standardized metric to assess consensus or divergence in future outlooks. Its
interpretation as a percentage makes it intuitively valuable for managerial decision-making, clearly
communicating the magnitude of forecast error. The MAPE (%) is given by (Javed & Cudjoe,
2020),

n

1
MAPE(%) =~ x Z
k=1

x(k) — x(k)

where x(k) and X(k) are indicative of both observe and simulate (forecast) values obtained
through the model. According to the scale proposed by Javed and Cudjoe (2020), a MAPE (%) of
less than 20% reflects a good prediction:

(< 10 Highly accurate forecast

10~20 Good forecast

MAPE (%) =
(%) 20~30 Reasonable forecast
> 30 Inaccurate forecast

4. Results

4.1 Model Performance and Forecast Accuracy

The application of the DGM (1,1,&) model to the four key digital infrastructure variables yielded
forecasts with high statistical accuracy. The in-sample MAPE for the petiod 2019-2023/2024 was
exceptionally low for all variables: 0.067% for global network traffic, 1.341% for global data
created, 0.118% for data centre supply, and 0.122% for data centre demand (see Tables 1 and 2).
These results confirm the model's robust fit to the historical data, validating its use for forward
projection. The model's inherent strength in handling small, non-linear datasets is cleatly
demonstrated, with the optimized o parameter successfully capturing the unique growth dynamics
of each series.

A critical comparison was made between the forecasts generated by our DGM (1,1,0) model
(hereafter "model estimates") and the independent projections for 2024-2027 published in the
Global Data Centre Insights 2024 report ("GDCI estimates"). The MAPE for this out-of-sample
comparison period reveals a close but nuanced alignment between the two forecasting sources.
The forecasts for Global Data Created showed the strongest agreement (MAPE = 1.51%),
indicating a high degree of consensus on the trajectory of data generation. Forecasts for Global
Data Centre Demand also aligned well (MAPE = 3.45%). Slightly larger, yet still reasonable,
divergences were observed for Global Network Traffic (MAPE = 4.55%) and Global Data Centre
Supply (MAPE = 5.09%). These variances likely stem from differences in methodological
approach; while our model extrapolates purely from the historical time series, the GDCI estimates
likely incorporate proprietary market intelligence, granular capacity pipelines, and qualitative
assessments of investment plans.

4.2 Analysis of Projections and Growth Dynamics

The forecast results from both our model and the GDCI report paint a picture of sustained,
robust growth across all four metrics through 2027 and beyond. The estimated « parameters
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Table 1. The forecasting of Network Traffic Data and Global Data Created

Global network traffic data? Global Data Created (ZB)P
Actual data | DGM (1,1,a) GDCI¢ | Actualdata | DGM (1,1,a) GDClI¢
2019 100 100 41 41
2020 150 150 64 64
2021 199 199 79 80
2022 253 253 97 99
2023 316 316 125 121
2024 388 393 147 149
2025 473 492 182 181
2026 572 610 223 222
2027 689 741 273 282
2028 826 333
2029 986 407
2030 1174 496
o 0.664 0.935
MAPE (%) in-sample 0.067% 1.341%
MAPE (%) — benchmarkd 4.55% 1.51%
@ Indexed as of 2019, i.e., the value for 2019 is set to 100 and subsequent years show growth relative to 2079.
b Zettabytes
¢ The GDCI estimates are from Sanger and Sriran (2024).
d MAPE (%) with respect to industry benchmarks i.e., the GDCI estimates.

Table 2. The forecasting of global data centre supply and demand

Global Data Centre Supply (GW)¢ Global Data Centre Demand (GW)¢
Actualdata | DGM (1,1,0) | GDCI | Actualdata | DGM (1,1,00) GDCI
2019 21.2 21.2 18.4 18.4
2020 24.0 24.0 20.9 20.9
2021 27.0 27.1 23.8 23.8
2022 30.6 30.6 27.0 27.0
2023 34.5 34.5 30.5 30.6
2024 38.9 38.9 34.7 34.6
2025 43.9 45.1 39.2 39.8
2026 49.6 522 44.4 46.0
2027 56.0 60.6 50.2 53.1
2028 63.2 56.8
2029 71.3 64.2
2030 80.5 72.6
o 1.00 0.981
MAPE (%) in-sample 0.118% 0.122%
MAPE (%) - benchmark 5.09% 3.45%

¢ Gigawatts

provide insight into the nature of this growth: (a) Network Traffic (#=0.664) and Data Created
(@=0.935) exhibit o values significantly below 1, indicative of a growth pattern that is strong but
gradually decelerating from a previously super-exponential phase. This suggests a maturation of
the underlying drivers, though from a very high baseline. (2) Data Centre Supply («=1.00) and
Demand (x=0.981) have « values very close to 1, signaling near-exponential, constant-rate growth.
This reflects the capital-intensive, project-led nature of infrastructure deployment, which is
struggling to accelerate further due to the significant barriers to entry outlined in the GDCI report
(e.g., supply chain, power, permitting). The analyses are shown in Figures 7 and 2.

A pivotal finding for strategic planning is the erosion of the relative supply buffer. While the
absolute difference between supply and demand (in GW) increases, the growth rate of demand is
so rapid that the surplus as a percentage of total market demand is projected to shrink. This buffer

decreases from ~15% (= w) in 2019 to ~11% (= 80_73) by 2030 in our model, with the
18.4 73
GDCI 2027 estimate showing a similar compression to ~14% (= 60.27—?3.1)‘ From a management

perspective, this shrinking percentage buffer is what signals tightening market conditions. A 7 GW
surplus in a 73 GW market (2030) represents a much leaner cushion against demand shocks or
supply delays than a 2.8 GW surplus in an 18.4 GW market (2019). While the absolute surplus in
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Fig 2. The forecasting of global data centre supply and demand projections

GW grows, the buffer ratio (or reserve margin) shrinks because demand grows even faster. It
indicates reduced slack in the system, leading to decreased tenant bargaining power, reduced
flexibility for operators, and the potential for localized shortages even while a global aggregate
surplus exists. This perfectly aligns with observable market phenomena like rising lease rates and
longer lead times (McKinsey, 2024).

Furthermore, the growth rate of Data Created is forecasted to outpace that of Data Centre
Supply & Demand in the long-term model projection. This implies an increasing "density" of
storage and computation, where more data must be processed, stored, or discarded per unit of
available infrastructure power. This trend directly supports the industry shift towards higher rack
densities, advanced cooling solutions, and efficiency gains driven by Al and specialized hardware.

4.3 Implications

The analysis confirms that the global digital infrastructure ecosystem is on a steep, non-linear
growth trajectory. The strong performance of the DGM(1,1,x) model validates Grey System
Theory as a potent tool for forecasting in this data-limited, high-uncertainty domain. The minor
discrepancies between the model estimates and the GDCI estimates highlight different forecasting
philosophies while converging on the central trend of robust growth.

The most significant finding for strategic management is the projected compression of the
supply buffer. While the absolute difference between supply and demand (in GW) increases, the
buffer ratio—the surplus expressed as a percentage of total demand—is forecasted to shrink from
approximately 15% in 2019 to about 10% by 2030. This indicates that the system's effective slack
is diminishing relative to its scale. This erosion of the relative buffer has direct and meaningful
business implications: (a) A tighter buffer means less immediately available capacity in the market.
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Tenants, especially those with urgent or large-scale requirements, lose leverage, which manifests in
rising lease rates and stricter contract terms. (b) The shrinking cushion amplifies the risk of missing
capacity needs due to lead times (2-4 years for new builds). Companies must shift from just-in-time
procurement to strategic, long-term capacity planning and reservation. (c) A 10% buffer provides
significantly less protection against a sudden demand surge (e.g., from a new Al model rollout)
than a 15% buffer does in a smaller market. This increases systemic risk and volatility. (d) This
quantitative projection of buffer compression directly explains the observable industry phenomena
cited in reports: prolonged lead times, rising costs, and concerns over future shortages, even while
aggregated global numbers show a surplus. Therefore, for stakeholders, the primary takeaway is
not an imminent global shortage, but a strategic transition into a market with thinning margins for
error. This environment prioritizes those who secure capacity eatly, invest in efficiency to do more
with less, and build flexible partnerships within the infrastructure value chain.

The convergence of the forecasts on key points—especially the tightening supply-demand
balance—is a critical takeaway. It signals that current investment levels, while record-breaking, may
still be insufficient to meet the wave of demand fueled by Al and broad digital transformation. The
projected growth differential between data creation and physical capacity further highlights the
urgent need for technological innovation in compute efficiency, not just in capacity expansion. For
stakeholders, these results underscore the strategic importance of securing long-term capacity,
investing in next-generation cooling and power efficiency, and closely monitoring the lead
indicators of supply chain and energy grid constraints.

5. Conclusion

This study demonstrates the efficacy of grey forecasting as a strategic tool for navigating the
high-growth, high-uncertainty digital infrastructure sector. By applying the DGM(1,1,0) model, we
have generated robust projections for core market metrics, validating the model's accuracy against
historical data and benchmarking its output against leading industry analysis. The central,
managerially significant finding is not merely the confirmation of strong growth, but the
identification of a critical shift in market structure: a pronounced compression of the global supply
buffer. While absolute capacity continues to expand, the surplus relative to total demand is
projected to shrink considerably, signaling a transition towards a tighter, less forgiving market
environment.

This erosion of the relative safety margin has immediate implications for corporate strategy. For
enterprise consumers of data center services, it heralds an end to the era of easily scalable, cost-
flexible capacity procurement. The foreseeable future will be characterized by rising costs, longer
planning horizons, and increased negotiation leverage for providers. Consequently, strategic
planning must now prioritize long-term capacity security and supply chain resilience over short-
term cost optimization. Proactive portfolio management, involving a mix of geographic
diversification and forward-leasing, becomes a competitive necessity to mitigate operational risk.

For investors and operators, the converging trends point to a landscape where competitive
advantage will be determined by efficiency and strategic execution. Capital allocation must
increasingly favor assets and technologies that deliver higher power density and superior energy
efficiency, as these attributes will command premium pricing and tenant loyalty in a constrained
environment. Furthermore, the business model is evolving from pure asset ownership to one of
integrated partnership, requiring operators to develop deeper technical and financial collaboration
with major hyperscale tenants to secure large-scale, built-to-suit projects.

Ultimately, this analysis provides a quantitative foundation for a paradigm shift in managerial
thinking. Treating digital infrastructure as a stable utility is no longer tenable. Instead, it must be
recognized as a dynamic, strategic factor of production subject to tightening constraints. Success
will depend on an organization’s ability to incorporate forward-looking, non-linear forecasting into
its strategic foresight, enabling proactive adaptation to the impending capacity crunch. The
actionable insight is clear: in the coming decade, strategic foresight and early commitment will be
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far more valuable than reactive negotiation in securing the foundational compute resources that
underpin modern enterprise.
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