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Abstract: The agriculture sector plays a vital role in the economy, society, and environment, the three dimensions 

of sustainability. The agriculture sector contributes 12% to 14% of global greenhouse gas (GHG) emissions to the 

atmosphere, negatively impacting climate change. Using low-carbon and sustainable agricultural technologies can 

help mitigate climate change and global food security issues. But selecting and prioritizing the best technologies 

among all alternatives has always been an issue for decision-makers because of various uncertainty related to the 

agricultural sector. Therefore, the current study intends to identify and prioritize the key low-carbon and sustainable 

agricultural technologies. The current study makes a pioneering attempt in employing the Grey Ordinal Priority 

Approach (OPA-G), a modern multi-attribute decision-making technique, for the evaluation of low-carbon and 

sustainable technologies for the agricultural sector. 

 

Keywords: Low-carbon; agricultural technology; grey system theory; multiple criteria decision making; grey ordinal 

priority approach; sustainable development  

 

1. Introduction 

Reducing emissions from agricultural activities is a global issue getting exceeding attention these days. 

For minimizing the carbon emissions from the agriculture sector, the role of low carbon technologies 

is hard to ignore. The agriculture-related activities produce emissions that negatively affect the 

environment. These emissions are usually associated with livestock, burning of crop residues, using N 

fertilizer, agricultural soil, enteric fermentation, biomass burning, deforestation etc. (Khan, 2020). 

Studies have argued that sustainable agricultural technologies can play an essential role in achieving low 

carbon agriculture plans (Vinholis et al., 2021) and ensuring green food production for resource 

conservation (Zaman, 2020). Unlike the emissions from other energy-intensive economic sectors, the 

agriculture sector's greenhouse gas emissions are usually underestimated (McMahon, 2019). Agriculture-

related activity directly contributes 12%-14% of global greenhouse gas (GHG) emissions to the 

atmosphere (Beach et al., 2008; Tian et al., 2011). China, India, Brazil, and the USA are the biggest 

emitter of GHG from the agricultural sector. Agricultural activity in other developing countries is also 

growing at a fast pace (Bennetzen et al., 2016), indicating greater emissions in the future. The current 

study recognizes this fact and tries to highlight the issue of greenhouse gas emissions from the 

agriculture sector and its implications for sustainable development and food security issues. Notably, 
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low-carbon and sustainable agricultural technologies can help agricultural sectors of different countries 

reduce emissions.  

It is always difficult to select suitable technologies for the agricultural industry (Ren et al., 2017). 

Hence, considering sustainable criteria such as economic, social, and environmental, it has become even 

more difficult for the decision-makers to select the best low-carbon and sustainable technologies for 

the agricultural industry. However, multiple criteria decision-making (MCDM) is a popular technique 

to identify the best alternative among all possible alternatives based on different conflicting criteria. 

Thus, numerous decision-making methods have been proposed to date to solve MCDM problems. For 

example, Wang et al. (2018) used the Fuzzy AHP-VIKOR method to prioritize sustainable energy 

technology for the agricultural sector. Yu et al. (2019), Memari et al. (2019), and Li et al. (2019) applied 

the TOPSIS method for selecting the best suppliers for different industries. Amindoust (2018) and 

Ghadimi et al. (2018) used a fuzzy inference system to deal with the uncertainty in supplier selection. 

These studies proved the wide acceptance of MCDM methods among scholars. However, considering 

the variety of applications in decision-making methods, it is observed that there are many limitations in 

existing MCDM models (Mahmoudi et al., 2020). Javed et al. (2020) classified uncertainty in MCDM 

methods into five classes, as shown in Figure 1. 

In light of the above discussion, the current study attempts to find a reliable solution for the decision-

makers so that they can select the best possible alternatives based on different criteria. The present 

study uses the Grey Ordinal Priority Approach (OPA-G), a modern multi-attribute decision-making 

technique, to evaluate low-carbon and sustainable agricultural technologies while dealing with most of 

the problems mentioned above.  

The rest of the study is organized as follows. Section two describes the reviews of literature related 

to the role of agriculture in sustainable development goals (SDGs), finds the primary sources of 

emissions from the agricultural sector, and identified the critical low-carbon and sustainable agriculture 

technology that can play an important role in mitigating climate change and provide global food security. 

Grey Ordinal Priority Approach (OPA-G) model is also explained. Section three develops the Grey 

Ordinal priority approach (OPA-G), a modern multi-attribute decision-making model that will help 

evaluate low-carbon and sustainable agricultural technologies. Section four describes the result and 

discussion of the OPA-G model, and finally, the study will conclude with essential suggestions and 

implications for the countries where agriculture plays a vital role in the economy and maintaining food 

security. 

2. Literature Review 

2.1 Role of Agriculture Sector in Sustainable Development 

The concept of sustainable development (SD) is relatively new, but, today it is one of the most widely 

discussed topics worldwide. According to the United Nations Bruntland Commission Report (1987), it 

is the "development that meets the needs of the present without compromising the ability of future 

generations to meet their own needs." The agriculture sector is a key sector contributing to sustainable 

development (Smith et al., 2014). According to FAO (2020.), among 17 sustainable development goals 

(SDGs) promoted by the United Nations, SDG1, SDG2, and SDG13 are directly linked to the 

Agricultural sector. To achieve sustainability in the agricultural sector, it must meet the present and 

future generations' needs by ensuring all the sustainability dimensions (economic, social and 

environmental) (FAO, 2021). But climate change poses the biggest threat to the agricultural sector; 

global agricultural production and food security already has been compromised due to climate change 

(IPCC, 2012). Growing evidence indicates that Climate change, agriculture, and global food security are 

closely linked to each other (Huo & Huo., 2019; Ray et al., 2015; Hatfield et al., 2014; Wheeler & Braun, 

2013; Olesen et al., 2011). It is important to note that agricultural production also has a negative impact 

on the environment, e.g., various agricultural activities such as tillage, livestock, burning of crop 

residues, using N fertilizer, agricultural soil, enteric fermentation, biomass burning, deforestation etc. 

release a huge amount of anthropogenic greenhouse gas (GHG) to the atmosphere (Li et al., 2021; 

Vetter et al., 2017). They have also argued that adopting low carbon and sustainable agricultural 

technology can help mitigate climate change and achieve sustainable development. 
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2.2 Overview of Greenhouse Gases Emissions from Agriculture Sector 

Agricultural activities directly contribute greenhouse gas (GHG) emissions to the atmosphere (Beach 

et al., 2008; Tian et al., 2011). Paustian et al. (2016) highlighted that 10% – 14% of global GHG emissions 

are related to agricultural production. A study by World Resources Institute has argued that the 

agricultural sector is the world's second-largest GHG emitter, after the energy sector, and this trend is 

less likely to change in the future (Russell, 2014). Unless taking any action to mitigate climate change, 

GHG emissions from the agricultural sector will reach 58% by 2050 (Arcipowska et al., 2019). However, 

currently, GHS emissions from the agriculture sector are estimated at approximately 60% from Africa 

and Latin America, 30% from Asia, and 10% from Europe and North America (Anuga et al., 2020). 

Considering the last twenty years, 1996 – 2016, China, India, the USA, and Brazil were the most 

responsible countries for GHG emissions from the agricultural sector. 37% of global agricultural GHG 

emission comes from these four countries (Arcipowska et al., 2019). Similarly, agricultural GHG 

emissions in other regions such as Africa also rises dramatically in the last 20 years. Average annual 

GHG emissions from the agriculture sector increase between 2.9% to 3.1%, while in China and India, 

it has increased by 16% and 14%, respectively. Meanwhile, Australia, Argentina, and Brazil are the top 

three countries for agricultural emission in terms of per capita (Tongwane & Moeletsi, 2018). Many 

studies have documented that the primary sources of GHG emissions from the agricultural sector are 

livestock, burning of crop residues, use of N fertilizer, enteric fermentation, biomass burning, 

deforestation etc. (Lybbert & Sumner. 2012; Khan et al., 2020; EU, 2020). See Figure 2 for details. 

Moreover, many researchers have pointed that there is a tremendous opportunity to mitigate a 

substantial amount of GHG from the agriculture sector through changes in agricultural management 

practice in different regions around the world; China (Li et al., 2021; Huo & Huo, 2019), India (Pathak 

et al., 2012), Brazil (Vinholis et al., 2021), Europe (EU, 2020), France (Meynard et al., 2018), Sub-Saharan 

Africa (Powlson et al., 2016), South America (De et al., 2017), these changes are closely related to low– 

carbon and sustainable agriculture technologies which can help the agricultural sector to mitigate climate 

change by reducing GHG emission and drive towards global food security and sustainable development.  

2.3 Causes of CO2 Emissions from Agriculture Sector 

Like other industries, the agricultural sector is also responsible for producing a huge amount of 

carbon dioxide (CO2). Several studies have been executed to find the leading causes of CO2 emission 
from the agricultural sector. Agricultural management practices, such as tillage, residues management,  

 

Figure 1. Five-dimensional uncertainties in MCDM methods (Source: Javed et al., 2020) 
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Figure 2. Primary sources of carbon emission from the agricultural sector 

fertilizer management, are the key sources of CO2 fluxes from agriculture to the atmosphere (Khan et 

al., 2020; Sikora et al., 2020). The use of fossil fuel in different agricultural operations, manufacturing of 

fertilizer, and pesticides are also responsible for producing CO2 (Bhatia et al., 2012; Redman et al., 2020). 

Soil is the largest pool of CO2, storing about 2344PgC of soil organic carbon SOC (Jobbágy & Jackson., 

2000). There is considerable evidence in the literature that confirms that conventional tillage system 

release protected SOC by disturbance and disruption of the soil, causing the soil to release a substantial 

amount of CO2 into the atmosphere (Dimassi et al., 2014; Luo et al., 2010; Ussiri & Lal, 2009; Six et al., 

2004). Abdalla et al. (2016) have argued that soil management (especially tillage systems) plays a crucial 

role in CO2 emission from agriculture. Using a Meta-Analysis, they have observed that a no-tillage 

system can reduce up to 21% of CO2 emissions than the conventional tillage system, which can 

significantly help mitigate climate change.  However, not only tillage system contributes CO2 emission 

to the atmosphere, but leftover material from agriculture (crop residues) also contains a high amount 

of CO2 (Cardoen et al., 2015). Considering ten years from 2003 to 2013, Cherubin et al. (2018) 

documented that the world has produced 3830 million metric tons (MT) of crop residues from 

agriculture. Deshavath et al. (2019) reported that in 2016 alone top four agricultural production countries 

– China, India, the USA, and Brazil – have burnt 181.8 MT of crop residues in open fields, contributing 

15.8 MT of CO2 emission to the earth's atmosphere. It is happening not because of farmer's 

unawareness of the environmental impact of open burning of crop residues but because of a lack of 

idea and information about low-carbon and cost-effective technologies (Kumar & Singh, 2021). Prasad 

et al. (2020) argued that crop residues have tremendous potential for producing renewable energy. Using 

the Life cycle assessment (LCA) method, they have shown that proper utilization of crop residues can 

play a vital role in cutting down net CO2 emissions and reducing the climate footprint from agriculture.  

2.4 Identification of Low-Carbon Sustainable Technologies in the Agriculture Sector 

Many studies have tried to identify and evaluate low carbon and sustainable agricultural technologies. 

Table 1 summarizes the literature on low carbon and sustainable agricultural technologies' evaluation. 

Based on the review of literature, the current study identified the following low carbon and sustainable 

agricultural technologies for potential evaluation: 
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Table 1. Summary of literature on low carbon and sustainable agricultural technologies' evaluation 

Year Description Country of 
focus 

Evaluation technique Reference 

2012 The study identified six low carbon 
technologies  

India Scenario-based analysis Pathak et al. (2012) 

2016 The study identified  Conservation 
Agriculture as a critical sustainable 
agricultural technology for the 
mitigation potential of climate 
change and food security 

Sub-Saharan 
Africa  

Meta-analysis  

 

Powlson et al. (2016) 

2015 The study identified integrated soil 
fertility management (ISFM) as a 
key technology for increasing food 
security and GHG mitigation 
potential 

N/A N/A Roobroeck et al. (2015) 

2015 The study identified 6 agricultural 
technologies with great mitigation 
potential 

China Bottom-up assessment Lybbert and Sumner 
(2012) 

2016 The study identified a No-tillage 
system as a key agricultural 
technology for reducing CO2 

emissions 

N/A Meta-analysis  

 

Abdualla et al. (2016) 

2017 The study identified six low carbon 
technology (RDPLi, NT, ICLFS, 
BNF, PCFF, IAW)  

South 
America  

Scenario-based analysis De et al. (2017) 

2017 This study identified 9 low carbon 
and sustainable agricultural 
technology  

N/A Qualitative approach Uppala et al. (2016) 

2018 The study identified Crop 
diversification as a key sustainable 
agricultural technology 

France Threefold approach Meynard et al. (2018) 

2019 The study identified two sustainable 
agricultural technology-based 
different criteria 

China A fuzzy AHP-VIKOR 

 

Wang et al. (2019) 

2019 The study identified one sustainable 
agricultural technology (SRI) 

Mali  Qualitative approach  Mwalupaso et al. (2019) 

2020 The study identified Agroforestry as 
an important agricultural technology 
for food security, increasing 
resilience, and mitigating climate 
change  

Southern 
Malawi 

Double hurdle 
specification with a 
control function 
approach 

Amadu et al. (2020) 

2020 The study identified five low carbon 
technology 

Africa  Preferred Reporting 
Items for Systematic 
Reviews and Meta-
Analyses (PRISMA) 
approach. 

Anuga et al. (2020) 

2020 The study identified ten low carbon 
technologies 

China Theory of Planned 
Behavior 

Li et al. (2020) 

2020 The study identified crop rotation 
as a sustainable agricultural 
technology based on different 
criteria 

India AHP-GIS Singha et al. (2020) 

2020 The study identified SWC and WH 
as important sustainable agricultural 
technology. 

Ethiopia Qualitative approach Yaekob et al. (2020) 

2020 The study identified ICLS and 
ICLFS as a viable low carbon 
technology 

Brazil Econometric regression 
models 

Vinholis et al. (2021) 

2021 The current study identifies (and 
prioritizes, based on selected 
criteria) nine low carbon agricultural 
technology, e.g., ICLS, ICLFS, No-
tillage, CS, etc.   

N/A Grey Ordinal Priority 
Approach (OPA-G) 

The current study 

*ICLS: Integrated Crop Livestock System; ICLFS: Integrated Crop-Livestock System; CS: Carbon Sequestration; SWC: Soil and 
Water Conservation;  WH: water harvesting 
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2.4.1 Integrated crop-livestock systems (T1).  Integrated crop-livestock systems (ICLS) are diversified 

agricultural production systems that can enhance food production and contribute to sustainable 

intensification while improving environmental quality by reducing net GHG emissions (Moraes et al., 

2019). ICLS advances ecological interaction between different natural resources such as (crops, animals, 

and grassland) and reduces the need for chemical fertilizers and other inputs by developing organic 

fertilization from livestock waste (Hendrickson et al., 2008). This low-carbon and sustainable technology 

are very important for sustainability, increasing profitability, and economic stability (Russelle et al., 

2007). However, despite economic, social, and environmental benefits, farmers' workload becomes a 

significant concern for this technology (Moraine et al., 2014). 

2.4.2 No-tillage (T2).  The no-tillage system is an agriculture technique that helps mitigate CO2 

emissions from dry land by avoiding soil disturbance, reports Abdalla et al. (2016). Their study finds 

that conventional tillage system emits 21% more CO2 than No-tillage system. It is a popular agricultural 

technology worldwide because of its ability to maximize soil water infiltration, reduce soil erosion, and 

increase organic carbon stock (Page et al., 2019). However, Powlson et al. (2014) focused on its benefits 

and limitations. They suggested this low carbon agricultural technology significantly impacts soil 

properties, crop growth, and the environment. These technologies' key benefits are; increased rainfall 

infiltration, Increased soil biological activity, Increased crop yields, decreased risk of soil erosion, 

labor/time saved through avoiding tillage operations, reduced costs, and CO2 emission by elimination 

of fossil fuel use in tillage operations. However, despite many benefits, they have also argued that this 

technology has some limitations in the long term. For example, crop yields may remain unchanged in 

some situation, nitrous oxide emissions may increase, extra labor force for weed control may be needed, 

in wet climates planting crops may be delayed, machinery for planting crops may not be available in less 

developed countries, and farm income may not increase in near term. 

2.4.3 Integrated crop-livestock-forest system (T3).  According to Vinholis et al. (2020), an integrated crop-

livestock-forest system (CLFS) is an agro-ecosystem management practice that can improve the soil's 

biological, chemical, and physical conditions. This low carbon agricultural technique combines different 

farming systems such as crop–forest, crop-livestock, forest–livestock, and crop-livestock–forest (Valani 

et al. 2021). This technology's benefit includes increasing cycling and nutrient utilization efficiency, 

reducing production costs, and protecting climate change by reducing GHG emissions. 

2.4.4 Conservation agriculture (T4).  Conservation agriculture (CA) technology is considered a greener 

solution for mitigating negative impacts from the agricultural sector (Gilbert, 2012). It is a potential 

cropping system that can minimize the adverse effects of declining soil fertility and minimize 

environmental degradation (Kassam et al., 2009). This modern agricultural technique can enable farmers 

in different parts of the world to achieve sustainable agricultural production (Hobbs et al. 2008). Large-

scale farmers located in various regions such as North America, South America, Australia, New Zealand 

are benefiting by adopting CA technology (Kassam et al., 2009). Despite many complementariness, there 

are some constraints and challenges for adopting CA technology, especially in small-scale farming linked 

to limited resources such as land, labor, capital etc. (Valbuena et al., 2012). However, its advantages 

outweigh its limitations. 

2.4.5 Integrated Soil Fertility Management (T5).  Integrated Soil Fertility Management (ISFM) is 

considered a means of enhancing crop productivity and maximizing agronomic inputs' efficiency, thus 

contributing to sustainable intensification (Vanlauwe et al., 2015). ISFM is climate-smart agriculture 

(CSA) practices associated with cropping, fertilizers, organic resources, and other processes in addition 

to increasing agricultural production and input use efficiency. In the long run, ISFM provides 

productivity gains, increased resilience, and mitigation benefits (Roobroeck et al., 2015). Despite the 

usefulness of ISFM for food security, farmers' income and environmental protection lack of awareness 

and disbeliefs about ISFM become a significant concern for adopting this low-carbon and sustainable 

agricultural technology (Lambrecht et al. 2016). 

2.4.6 Agroforestry (T6).  The concept of agroforestry is an association of trees with crops or livestock 

on the same land that embraces a broad range of systems under different management schemes (Martin  
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et al., 2019), which can provide many benefits, including increase crop yields, reduce soil erosion, 

conserving biodiversity and increasing soil fertility (Nair et al. 2010; 2009). De Stefano and Jacobson 

(2018) argued that agroforestry could be a viable opportunity to tackle the climate change issues, 

reducing CO2 emissions from the agricultural sector. Considering all these benefits, Waldron et al. (2017) 

argued that agroforestry could help to increase global food security and, in the meantime, can help to 

achieve SDGs. 

2.4.7 Carbon sequestration (T7).  Carbon sequestration is the process of balancing carbon dioxide into 

an atmospheric C pool. Carbon sequestering in the agricultural sector requires a change in agricultural 

management practices such as pesticide use, irrigation, and machinery (West & Marland, 2002). This 

technology has a considerable potential to reduce CO2 emissions from the agriculture sector and fossil 

fuel emissions (Schlesinge, 1999). This process gains enormous attention as an alternate way to help 

stem the rate of greenhouse gas growth and associated changes in our climate. Scientist prioritizes 

carbon sequestration as the primary goal with ancillary improvements in water management, soil 

erosion, and food security. 

2.4.8 Crop diversification (T8).  The agricultural sector is the most sensitive to the climate change issue. 

Studies have documented a direct link to climate change and agricultural production, more likely 

negative impacts than positive (Li et al., 2021; Huo & Huo, 2019; Birthal & Hazrana, 2019). Crop 

diversification has a great potentiality to increase the sustainability of arable farming systems that 

minimize the inputs of (irrigation water, fertilizers, pesticides) expanding the heterogeneity of habitat 

mosaics, or reducing yield gap associated with too frequent returns of the same species (Meynard et al., 

2018).  Birthal and Hazrana (2019) have found that crop diversification has many benefits in the long 

run. On the other hand, Magrini et al. (2016) and Lithourgidis et al. (2011) argued that historically 

established to support large-scale specialization, selection of appropriate crops, and short-term 

maximization of profits with chemical inputs are the main barriers to the adaption of this technology. 

2.4.9 Soil and water conservation (T9).  Soil and water conservation (SWC) is a sustainable agriculture 

management system that reduces soil erosion, increases agricultural production yield, and grows organic 

carbon stock (Mekonnen, 2020; Adimassu et al., 2017). However, different scholars have shown that 

the impact of SWC technology has inconsistent results on crop yield and economic profitability in the 

short-run (Kato et al., 2011; Kassie et al., 2011). As a result, farmer's adaption rate to this technology is 

meagre. Asfaw et al. (2017) pointed out that inadequate information, poor skills, and inadequate 

transportation and communication are responsible for this technology's low adaption, especially in 

developing countries. 

 

 

Figure 3. The framework of the study 
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2.5 Grey Ordinal Priority Approach 

2.5.1 Grey system theory.  Deng Julong introduced the Grey System Theory in 1982 (Ju-Long, 1982) 

where a white–grey–black spectrum is used to explain the uncertainty of a system (Hao et al., 2006). 

Grey System Theory has a wide range of popularity among researchers from different fields because of 

its applicability to solve real-world situations where incomplete information and uncertainty exist. The 

key areas of Grey System Theory include grey relational analysis, grey generating space, grey forecasting, 

grey decision making, grey control, and grey mathematics. Grey System Theory has seen application in 

numerous fields, including agriculture (Tan et al., 2014), supplier selection (Mahmoudi et al., 2021a), 

economic growth analysis (Huang et al., 2020), health care management (Aydemir & Sahin, 2019; Javed 

and Liu., 2018), sustainable development (Ikram et al., 2021; Abid et al., 2021), environment (Hao et al., 

2006), electromagnetic data processing (Jiang et al., 2017), traffic flow prediction (Xiao et al., 2020), 

energy and emissions (Chen et al., 2021; Zhu et al., 2019), project management (Sheikh et al., 2019; Javed 

& Liu, 2019), machine learning (Xie et al., 2021; Ma, 2019), among others. It can be seen that the 

application of Grey System Theory is widespread and multi-disciplinary. Some researchers even argued 

its superiority over other methods such as fuzzy set theory, considering the ability and flexibility of 

dealing with ambiguity and uncertainty, independence over membership function, and ability to handle 

a small sample size (Chithambaranathan et al., 2015; Ng and Deng, 1995). Grey Ordinal Priority 

Approach is a new multi-criteria decision-making technique that fuses the advantages of grey system 

theory with the Ordinal Priority Approach (OPA) and is discussed in the subsequent section. 

2.5.2 Grey Ordinal Priority Approach.  The ordinal priority approach (OPA) is an emerging multi-

criteria decision-making (MCDM) technique developed by Ataie et al. (2020) and has recently seen some 

extensions. They argued that this model has a strong capability of supporting both single and group 

decision-making. Also, it can calculate the weights for different experts, criteria, and alternatives 

simultaneously, while most other MCDM models only can produce a ranking of alternatives based on 

the expert's opinion. The recent literature has demonstrated the OPA's effectiveness with interesting 

results. For example, Mahmoudi et al. (2020a) showed the suitability of the OPA-based framework for 

problems involving big data. Mahmoudi et al. (2021b) proposed the Fuzzy Ordinal Priority Approach 

to solve the decision-making problems through linguistic information.  

Grey Ordinal Priority Approach (OPA-G) is another important member of the OPA family and was 

proposed by Mahmoudi et al. (2021a). They demonstrated its effectiveness in solving sustainable 

supplier selection problems. They have shown that OPA-G can work without any linguistic variable or 

pairwise comparison-based data and have a high capability of dealing with greyness/uncertainty. While 

considering the ordinal priorities, the OPA-G model can provide the weights for experts, criteria, and 

alternatives. Table 2 shows the explanation of sets, indexes, variables, and the parameters of the OPA-

G model (Mahmoudi et al., 2021a). 

Table 2. Sets, indexes, variables, and parameters of the OPA-G model 

sets 

I Set of experts ∀𝑖 ∈  𝐼 

J Set of criteria ∀𝑗 ∈  𝐽 

K Set of alternatives ∀𝑘 ∈  𝐾 

Indexes 

i  Index of the experts (1, …, p) 

j  Index of preference of the criteria (1, …, n) 

k  Index of the alternatives (1, …, m) 

Variables 

⊗Z Grey objective function 

⊗Wijk
r Grey weight (importance) of kth alternative based on jth criterion by ith expert at rth rank 

Parameters 

⊗i Grey rank of the expert i 

⊗j Grey rank of the criterion j 

⊗r Grey rank of the alternative k 
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Table 3. The demographic profile of the respondents 

Gender Male (70%) 
Female (30%) 

Age More than 50 years old (20%) 
41 – 50 years old (30%) 
31 – 40 years old (20%) 
21 – 30 years old (30%) 

Industry Agriculture, Forestry and Other Land Use (80%) 
Other (20%) 

Position/post Top level manager (40%) 
Middle level manager (40%) 
Junior level manager (20%) 

Work Experience More than 12 years (40%) 
9 - 12 years (20%) 
7 – 9 years (10%) years 
4 – 6 years (20%) 
1 – 3 years (10 %) 

Organization type Public (50%) 
Private (50%) 

Total sample 10 

 
 

Understanding of some definitions is mandatory before the computational steps of the OPA-G are 
discussed. These definitions are defined below and are adapted from Mahmoudi et al. (2020). 

Definition I:  Grey number ⊗ 𝐴 is described as follows:  

⊗ A = [ 𝐴, 𝐴], 𝐴 < 𝐴 (1) 

where, 𝐴 is the lower limit and 𝐴 is the upper limit of the grey number ⊗ 𝐴. Here, it should be noted 

that a grey number should not be confused with interval. Unlike an interval, a grey number is a crisp 

number, and its interval merely represents greyness in the exact location of this crisp number.  

Definition II: Assume that 𝐴 is a crisp number. Therefore, ⊗ 𝐴 has a grey rank [Rank(A) − 0.5, Rank(A) 

+ 0.5]. Equation (2) should be utilized to convert crisp rank n to grey rank n. 

Rank ⊗ 𝑛[𝑛 − 0.5, 𝑛 + 0.5]  (2) 

Definition III: Assume that the expert(s) is not confident about in a choice of two ranks x and y for a 

criterion or an alternative while x < y. Then, Eq. (3) should be utilized for the grey rank: 

Rank(⊗ 𝑥 ,⊗ 𝑦) = [Rank (𝑥) − 0.5, Rank (𝑦) + 0.5] (3) 

The relevant computational steps of the OPA-G model are as follows (see Figure 3): 

Step 1: First, the decision-makers need to determine the necessary criteria.  

Step 2: The decision-makers must identify and select the relevant experts. 

Step 3: The experts should give ranking to different criteria. If experts also doubt about the exact priority 

level for different criteria, they can utilize Definitions II and III.  

Step 4: Determining the ranking for available alternatives in each criterion. In this step, experts still can 

use Definitions II and III to converts crisp rank into grey rank. 

Step 5: After collecting all the data needed in Step 1 to Step 4 the OPA-G model should be solved using 

Eq. (4) 

𝑀𝑎𝑥 ⊗ 𝑍 (4) 

S.t. (∀𝑖, 𝑗, 𝑘 and 𝑟): 
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⊗ 𝑍 ≤ ⊗ 𝑖 (⊗ 𝑗 (𝑟(⊗ 𝑊𝑖𝑗𝑘
𝑟 −⊗ 𝑊𝑖𝑗𝑘

𝑟+1)))  

⊗ 𝑍 ≤ ⊗ 𝑖 ⊗ 𝑗 ⊗ 𝑚 ⊗ 𝑊𝑖𝑗𝑘
𝑚  

∑∑∑⊗ 𝑊𝑖𝑗𝑘

𝑚

𝑘=1

𝑛

𝑗=1

𝑝

𝑖=1

= [0.8, 1.2] 

⊗ 𝑊𝑖𝑗𝑘  ≥ 0 

where, ⊗Z is unrestricted in sign. 

To obtain the individual weights of criteria and alternatives, Eqs. (5) and (6) should be employed 

respectively. 

𝑊𝑗 = ∑∑𝑊𝑖𝑗𝑘

𝑛

𝑗=1

𝑝

𝑖=1

  ∀𝑗 

 

(5) 

𝑊𝑘 = ∑∑𝑊𝑖𝑗𝑘

𝑛

𝑗=1

𝑝

𝑖=1

   ∀𝑘 

 

(6) 

Step 6: After getting all the weights of experts, criteria, and alternatives, the grey possibility degree 

should be calculated by the following matrix to extract the ranking of alternatives. 

𝐺𝑃𝑖𝑗 =

[
 
 
 
 
 
𝑃(𝑊1 ≤ 𝑊1)  𝑃(𝑊1 ≤ 𝑊2)… . 𝑃(𝑊1 ≤ 𝑊𝑘)

𝑃(𝑊2 ≤ 𝑊1)  𝑃(𝑊2 ≤ 𝑊2)… . 𝑃(𝑊2 ≤ 𝑊𝑘)
.
.
.

𝑃(𝑊𝑘 ≤ 𝑊1)  𝑃(𝑊𝑘 ≤ 𝑊2)… . 𝑃(𝑊𝑘 ≤ 𝑊𝑘)]
 
 
 
 
 

   

 

(7) 

Finally, the following matrix results 

𝑃𝑖𝑗 =

[
 
 
 
 
 
𝑝𝑤1𝑝𝑤1   𝑝𝑤1𝑝𝑤2 ……𝑝𝑤1𝑝𝑤𝑘

𝑝𝑤2𝑝𝑤1   𝑝𝑤2𝑝𝑤2 ……𝑝𝑤2𝑝𝑤1

.

.

.
𝑝𝑤𝑘𝑝𝑤1   𝑝𝑤𝑘𝑝𝑤2 ……𝑝𝑤𝑘𝑝𝑤𝑘]

 
 
 
 
 

   

 

(8) 

By summing up all the horizontal component of Pij we can get the ranking for an individual alternative. 

The highest value will represent the best alternative for selection. 

3. Research Methodology 

3.1 Data Collection and Analysis 

Data were collected from a designed survey where experts were selected in a random process from 

10 different countries and fields. Following the sustainability approach, we identified three different 

criteria (Economic, Social, and Environmental) to evaluate low carbon and sustainable agricultural 

technologies. Then expert opinions were sought to prioritize those criteria on a 1-3 point scale where 1 

represents high priority 3 represents low priority. Table 4 shows the opinion of experts regarding the 

evaluation of different criteria. Based on those criteria, experts were then asked to evaluate all the 

available alternatives/technologies on the same processes. Demographic information of the experts is 

available in Table 3. The data collected from them is available in Tables 5, 6, and 7. Microsoft Excel 
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was utilized for making tables and performing calculations, Google forms were utilized for preparing 

the questionnaire and then data collection. Lingo 9.0 software was utilized for building the OPA-G 

model and its execution. 

3.2 The model 

Because of the limited space, the model for one expert and three criteria is developed and shown 

below to introduce the readers to the model structure. In the current study, ten experts and nine criteria 

were involved, and the complete model was very lengthy, and thus is shown in the Appendix available 

at zeonodo (i.e., Shajedul, 2021). The key is islamislam. 

𝑀𝑎𝑥 =
1

2
∗ 𝑍 +

1

2
∗ 𝑍; 

𝑆. 𝑡. 

!Expert 1 !Criteria 1 

1.5 ∗ 1.5 ∗ 1.5 ∗ (𝑊11𝑇1 − 𝑊11𝑇2)  ≥  𝑍; 

0.5 ∗ 0.5 ∗ 0.5 ∗ (𝑊11𝑇1 − 𝑊11𝑇2) ≥ 𝑍; 

1.5 ∗ 1.5 ∗ 1.5 ∗ (𝑊11𝑇2 − 𝑊11𝑇4) ≥ 𝑍; 

0.5 ∗ 0.5 ∗ 0.5 ∗ (𝑊11𝑇2 − 𝑊11𝑇4) ≥ 𝑍; 

1.5 ∗ 1.5 ∗ 1.5 ∗ (𝑊11𝑇4 − 𝑊11𝑇5) ≥ 𝑍; 

0.5 ∗ 0.5 ∗ 0.5 ∗ (𝑊11𝑇4 − 𝑊11𝑇5) ≥ 𝑍; 

1.5 ∗ 1.5 ∗ 1.5 ∗ (𝑊11𝑇5 − 𝑊11𝑇8) ≥ 𝑍; 

0.5 ∗ 0.5 ∗ 0.5 ∗ (𝑊11𝑇5 − 𝑊11𝑇8) ≥ 𝑍; 

1.5 ∗ 1.5 ∗ 1.5 ∗ (𝑊11𝑇8 − 𝑊11𝑇9) ≥ 𝑍; 

0.5 ∗ 0.5 ∗ 0.5 ∗ (𝑊11𝑇8 − 𝑊11𝑇9) ≥ 𝑍; 

1.5 ∗ 1.5 ∗ 1.5 ∗ (𝑊11𝑇9 − 𝑊11𝑇3) ≥ 𝑍; 

0.5 ∗ 0.5 ∗ 0.5(𝑊11𝑇9 − 𝑊11𝑇3) ≥ 𝑍; 

1.5 ∗ 1.5 ∗ 2.5(𝑊11𝑇3 − 𝑊11𝑇7) ≥ 𝑍; 

0.5 ∗ 0.5 ∗ 1.5(𝑊11𝑇3 − 𝑊11𝑇7) ≥ 𝑍; 

1.5 ∗ 1.5 ∗ 2.5(𝑊11𝑇7 − 𝑊11𝑇6) ≥ 𝑍; 

0.5 ∗ 0.5 ∗ 1.5(𝑊11𝑇7 − 𝑊11𝑇6) ≥ 𝑍; 

1.5 ∗ 1.5 ∗ 3.5 ∗ (𝑊11𝑇6) ≥ 𝑍; 

0.5 ∗ 0.5 ∗ 2.5 ∗ (𝑊11𝑇6) ≥ 𝑍; 

!Expert 1 !Criteria 2 

1.5 ∗ 2.5 ∗ 1.5 ∗ (𝑊12𝑇2 − 𝑊12𝑇4) ≥ 𝑍; 

0.5 ∗ 1.5 ∗ 0.5 ∗ (𝑊12𝑇2 − 𝑊12𝑇4) ≥ 𝑍; 
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1.5 ∗ 2.5 ∗ 1.5 ∗ (𝑊12𝑇4 − 𝑊12𝑇7) ≥ 𝑍; 

0.5 ∗ 1.5 ∗ 0.5 ∗ (𝑊12𝑇4 − 𝑊12𝑇7) ≥ 𝑍; 

1.5 ∗ 2.5 ∗ 1.5 ∗ (𝑊12𝑇7 − 𝑊12𝑇9) ≥ 𝑍; 

0.5 ∗ 1.5 ∗ 0.5 ∗ (𝑊12𝑇7 − 𝑊12𝑇9) ≥ 𝑍; 

1.5 ∗ 2.5 ∗ 1.5 ∗ (𝑊12𝑇9 − 𝑊12𝑇3) ≥ 𝑍; 

0.5 ∗ 1.5 ∗ 0.5 ∗ (𝑊12𝑇9 − 𝑊12𝑇3) ≥ 𝑍; 

1.5 ∗ 1.5 ∗ 1.5 ∗ (𝑊12𝑇3 − 𝑊12𝑇5) ≥ 𝑍; 

0.5 ∗ 0.5 ∗ 0.5 ∗ (𝑊12𝑇3 − 𝑊12𝑇5) ≥ 𝑍; 

1.5 ∗ 2.5 ∗ 2.5 ∗ (𝑊12𝑇5 − 𝑊12𝑇6) ≥ 𝑍; 

0.5 ∗ 1.5 ∗ 1.5 ∗ (𝑊12𝑇5 − 𝑊12𝑇6) ≥ 𝑍; 

1.5 ∗ 2.5 ∗ 2.5 ∗ (𝑊12𝑇6 − 𝑊12𝑇8) ≥ 𝑍; 

0.5 ∗ 1.5 ∗ 1.5 ∗ (𝑊12𝑇6 − 𝑊12𝑇8) ≥ 𝑍; 

1.5 ∗ 2.5 ∗ 2.5 ∗ (𝑊12𝑇8 − 𝑊12𝑇8) ≥ 𝑍; 

0.5 ∗ 1.5 ∗ 1.5 ∗ (𝑊12𝑇8 − 𝑊12𝑇8) ≥ 𝑍; 

1.5 ∗ 2.5 ∗ 3.5 ∗ (𝑊12𝑇8) ≥ 𝑍; 

0.5 ∗ 1.5 ∗ 2.5 ∗ (𝑊12𝑇8) ≥ 𝑍; 

!Expert 1 !Criteria 3 

1.5 ∗ 1.5 ∗ 1.5 ∗ (𝑊13𝑇2 − 𝑊13𝑇3) ≥ 𝑍; 

0.5 ∗ 0.5 ∗ 0.5 ∗ (𝑊13𝑇2 − 𝑊13𝑇3) ≥ 𝑍; 

1.5 ∗ 1.5 ∗ 1.5 ∗ (𝑊13𝑇3 − 𝑊13𝑇4) ≥ 𝑍; 

0.5 ∗ 0.5 ∗ 0.5 ∗ (𝑊13𝑇3 − 𝑊13𝑇4) ≥ 𝑍; 

1.5 ∗ 1.5 ∗ 1.5 ∗ (𝑊13𝑇4 − 𝑊13𝑇6) ≥ 𝑍; 

0.5 ∗ 0.5 ∗ 0.5 ∗ (𝑊13𝑇4 − 𝑊13𝑇6) ≥ 𝑍; 

1.5 ∗ 1.5 ∗ 1.5 ∗ (𝑊13𝑇6 − 𝑊13𝑇7) ≥ 𝑍; 

0.5 ∗ 0.5 ∗ 0.5 ∗ (𝑊13𝑇6 − 𝑊13𝑇7) ≥ 𝑍; 

1.5 ∗ 1.5 ∗ 1.5 ∗ (𝑊13𝑇7 − 𝑊13𝑇9) ≥ 𝑍; 

0.5 ∗ 0.5 ∗ 0.5 ∗ (𝑊13𝑇7 − 𝑊13𝑇9) ≥ 𝑍; 

1.5 ∗ 1.5 ∗ 1.5 ∗ (𝑊13𝑇9 − 𝑊13𝑇5) ≥ 𝑍; 

0.5 ∗ 0.5 ∗ 0.5 ∗ (𝑊13𝑇9 − 𝑊13𝑇5) ≥ 𝑍; 
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1.5 ∗ 1.5 ∗ 2.5 ∗ (𝑊13𝑇5 − 𝑊13𝑇8) ≥ 𝑍; 

0.5 ∗ 0.5 ∗ 1.5 ∗ (𝑊13𝑇5 − 𝑊13𝑇8) ≥ 𝑍; 

1.5 ∗ 1.5 ∗ 2.5 ∗ (𝑊13𝑇8 − 𝑊13𝑇1) ≥ 𝑍; 

0.5 ∗ 0.5 ∗ 1.5 ∗ (𝑊13𝑇8 − 𝑊13𝑇1) ≥ 𝑍; 

1.5 ∗ 1.5 ∗ 3.5 ∗ (𝑊13𝑇1) ≥ 𝑍; 

0.5 ∗ 0.5 ∗ 2.5 ∗ (𝑊13𝑇1) ≥ 𝑍; 

𝑊11𝑇1 + 𝑊11𝑇2 + 𝑊11𝑇3 + 𝑊11𝑇4 + 𝑊11𝑇5 + 𝑊11𝑇6 + 𝑊11𝑇7 + 𝑊11𝑇8 + 𝑊11𝑇9 + 𝑊12𝑇1

+ 𝑊12𝑇2 + 𝑊12𝑇3 + 𝑊12𝑇4 + 𝑊12𝑇5 + 𝑊12𝑇6 + 𝑊12𝑇7 + 𝑊12𝑇8 + 𝑊12𝑇9

+ 𝑊13𝑇1 + 𝑊13𝑇2 + 𝑊13𝑇3 + 𝑊13𝑇4 + 𝑊13𝑇5 + 𝑊13𝑇6 + 𝑊13𝑇7 + 𝑊13𝑇8

+ 𝑊13𝑇9 = 1.2; 

𝑊11𝑇1 + 𝑊11𝑇2 + 𝑊11𝑇3 + 𝑊11𝑇4 + 𝑊11𝑇5 + 𝑊11𝑇6 + 𝑊11𝑇7 + 𝑊11𝑇8 + 𝑊11𝑇9 + 𝑊12𝑇1

+ 𝑊12𝑇2 + 𝑊12𝑇3 + 𝑊12𝑇4 + 𝑊12𝑇5 + 𝑊12𝑇6 + 𝑊12𝑇7 + 𝑊12𝑇8 + 𝑊12𝑇9

+ 𝑊13𝑇1 + 𝑊13𝑇2 + 𝑊13𝑇3 + 𝑊13𝑇4 + 𝑊13𝑇5 + 𝑊13𝑇6 + 𝑊13𝑇7 + 𝑊13𝑇8

+ 𝑊13𝑇9 = 0.8; 

𝑍 ≥ 𝑍; 

𝑊11𝑇1 ≥ 𝑊11𝑇1;𝑊11𝑇2 ≥ 𝑊11𝑇2;𝑊11𝑇3 ≥ 𝑊11𝑇3;𝑊11𝑇4 ≥ 𝑊11𝑇4;𝑊11𝑇5 ≥ 𝑊11𝑇5;𝑊11𝑇6

≥ 𝑊11𝑇6;𝑊11𝑇7 ≥ 𝑊11𝑇7;𝑊11𝑇8 ≥ 𝑊11𝑇8;𝑊11𝑇9 ≥ 𝑊11𝑇9;𝑊12𝑇1

≥ 𝑊12𝑇1;𝑊12𝑇2 ≥ 𝑊12𝑇2;𝑊12𝑇3 ≥ 𝑊12𝑇3;𝑊12𝑇4 ≥ 𝑊12𝑇4;𝑊12𝑇5

≥ 𝑊12𝑇5;𝑊12𝑇6 ≥ 𝑊12𝑇6;𝑊12𝑇7 ≥ 𝑊12𝑇7;𝑊12𝑇8 ≥ 𝑊12𝑇8;𝑊12𝑇9

≥ 𝑊12𝑇9;𝑊13𝑇1 ≥ 𝑊13𝑇1;𝑊13𝑇2 ≥ 𝑊13𝑇2;𝑊13𝑇3 ≥ 𝑊13𝑇3;𝑊13𝑇4

≥ 𝑊13𝑇4;𝑊13𝑇5 ≥ 𝑊13𝑇5;𝑊13𝑇6 ≥ 𝑊13𝑇6;𝑊13𝑇7 ≥ 𝑊13𝑇7;𝑊13𝑇8

≥ 𝑊13𝑇8;𝑊13𝑇9 ≥ 𝑊13𝑇9; 

 

𝑊11𝑇1,𝑊11𝑇2,𝑊11𝑇3,𝑊11𝑇4,𝑊11𝑇5,𝑊11𝑇6,𝑊11𝑇7,𝑊11𝑇8, 

𝑊11𝑇9,𝑊12𝑇1,𝑊12𝑇2,𝑊12𝑇3,𝑊12𝑇4,𝑊12𝑇5,𝑊12𝑇6,𝑊12𝑇7, 

𝑊12𝑇8,𝑊12𝑇9,𝑊13𝑇1,𝑊13𝑇2,𝑊13𝑇3,𝑊13𝑇4,𝑊13𝑇5,𝑊13𝑇6, 

𝑊13𝑇7,𝑊13𝑇8,𝑊13𝑇9 ≥ 0. 

 

4. Data and results 

The study involves three sustainability criteria, ten experts, and nine different alternatives that can be 

seen from Tables 4 to 7. It is important to note that the study considered all the experts to be of equally 

important. However, it is worth noting that the OPA-G can calculate the experts' weights as well, if 

needed. After solving the model, weights and ranking for criteria and alternatives are shown in Tables 

8 and 9. To obtain the weights of criteria and alternatives, Eqs. (5) and (6) are employed. Afterward, to 

extract the ranking for criteria and alternatives matrix Pji has been estimated using Eq. (8).  
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Table 4. Experts’ opinions regarding importance of different criteria 

Experts Rank Type Economic criterion (C1) Social criterion (C3) Environmental criterion (C2) 

E1 Crispy Rank (CR) 1 2 1 

Grey Rank (GR) [0.5,1.5] [1.5,2.5] [0.5,1.5] 

E2 Crispy Rank (CR) 1 2 1 

Grey Rank (GR) [0.5,1.5] [1.5,2.5] [0.5,1.5] 

E3 Crispy Rank (CR) 1 3 2 

Grey Rank (GR) [0.5,1.5] [2.5,3.5] [1.5,2.5] 

E4 Crispy Rank (CR) 1 2 1 

Grey Rank (GR) [0.5,1.5] [1.5,2.5] [0.5,1.5] 

E5 Crispy Rank (CR) 1 3 2 

Grey Rank (GR) [0.5,1.5] [2.5,3.5] [1.5,2.5] 

E6 Crispy Rank (CR) 1 1 1 

Grey Rank (GR) [0.5,1.5] [0.5,1.5] [0.5,1.5] 

E7 Crispy Rank (CR) 2 2 1 

Grey Rank (GR) [1.5,2.5] [1.5,2.5] [0.5,1.5] 

E8 Crispy Rank (CR) 1 2 1 

Grey Rank (GR) [0.5,1.5] [1.5,2.5] [0.5,1.5] 

E9 Crispy Rank (CR) 2 3 1 

Grey Rank (GR) [1.5,2.5] [2.5,3.5] [0.5,1.5] 

E10 Crispy Rank (CR) 2 3 1 

Grey Rank (GR) [1.5,2.5] [2.5,3.5] [0.5,1.5] 

Table 5. Opinion of experts for the technologies against Economic criteria 

Experts Rank 
Type 

T1 T2 T3 T4 T5 T6 T7 T8 T9 

E1 CR 1 1 2 1 1 3 2 1 1 

GR [0.5,1.5] [0.5,1.5] [1.5,2.5] [0.5,1.5] [0.5,1.5] [2.5,3.5] [1.5,2.5] [0.5,1.5] [0.5,1.5] 

E2 CR 1 2 4 2 4 5 1 3 2 

GR [0.5,1.5] [1.5,2.5] [3.5,4.5] [1.5,2.5] [3.5,4.5] [4.5,5.5] [0.5,1.5] [2.5,3.5] [1.5,2.5] 

E3 CR 1 5 2 5 2 3 4 1 4 

GR [0.5,1.5] [4.5,5.5] [1.5,2.5] [4.5,5.5] [1.5,2.5] [2.5,3.5] [3.5,4.5] [0.5,1.5] [3.5,4.5] 

E4 CR 1 5 2 3 5 4 6 3 4 

GR [0.5,1.5] [4.5,5.5] [1.5,2.5] [2.5,3.5] [4.5,5.5] [3.5,4.5] [5.5,6.5] [2.5,3.5] [3.5,4.5] 

E5 CR 1 5 1 or 2 3 6 4 3 2 or 3 5 

GR [0.5,1.5] [4.5,5.5] [0.5,2.5] [2.5,3.5] [5.5,6.5] [3.5,4.5] [2.5,3.5] [1.5,3.5] [4.5,5.5] 

E6 CR 1 2 1 1 2 1 2 1 1 

GR [0.5,1.5] [2.5,3.5] [0.5,1.5] [0.5,1.5] [2.5,3.5] [0.5,1.5] [2.5,3.5] [0.5,1.5] [0.5,1.5] 

E7 CR 1 6 3 5 7 4 8 2 9 

GR [0.5,1.5] [5.5,6.5] [2.5,3.5] [4.5,5.5] [6.5,7.5] [3.5,4.5] [7.5,8.5] [2.5,3.5] [8.5,9.5] 

E8 CR 1 4 2 3 4 3 5 2 5 

GR [0.5,1.5] [3.5,4.5] [2.5,3.5] [2.5,3.5] [3.5,4.5] [2.5,3.5] [4.5,5.5] [2.5,3.5] [4.5,5.5] 

E9 CR 1 5 2 3 5 4 5 6 7 

GR [0.5,1.5] [4.5,5.5] [2.5,3.5] [2.5,3.5] [4.5,5.5] [3.5,4.5] [4.5,5.5] [5.5,6.5] [6.5,7.5] 

E10 CR 2 4 3 1 4 3 5 1 4 

GR [2.5,3.5] [3.5,4.5] [2.5,3.5] [0.5,1.5] [3.5,4.5] [2.5,3.5] [4.5,5.5] [0.5,1.5] [3.5,4.5] 
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Agricultural activity is the lifeline for human civilization. However, it is also a source of some adverse 

effects environment which are usually overlooked. Identifying and selecting appropriate low-carbon 

and sustainable technologies for the agriculture sector can reduce these adverse effects. Thus the current 

study identified the best low-carbon and sustainable agricultural technologies and then applied OPA-G 

methods to evaluate those technologies. After analyzing all experts' opinions, results show that all these 

technologies have some potential to be used in the agriculture sector to handle global climate change 

agricultural sustainability issues with varying degrees of priority. The current study finds that among all 

the available alternatives, integrated crop-livestock systems (ICLS), T1, constitute the best technology 

that can enhance food production and contribute to sustainable development while improving 

environmental quality by reducing net GHG emissions. The literature from different regions supports 

this finding. For example, Vinholis et al. (2021) showed that Brazil has already taken the initiative to 

adapt ICLS to its agriculture sector as a voluntary target of reducing emissions. By 2020 Brazil has 

adopted about 4 million hectares of land under ICLS and avoided 22.11 million tons of carbon dioxide 

(MAPA, 2019). In North America, Russelle et al. (2007) suggested that farmers should adapt ICLS 

technology to enhance firms' profitability and environmental sustainability. However, from Table 4, 

one can easily see the ranking of all available technologies. Figure 4 shows complete ranking. 

In terms of sustainability criteria, results suggest all these technology has some viable potentiality to 

be used in the agricultural sector and the literature also suggests the same. But the current study did not 

find any literature that has suggested ranking for low carbon and sustainable agricultural technology 

under uncertainty. Therefore, the current study employed the OPA-G model to handle the uncertainty 

related to the agricultural sector and find the ranking among different alternatives. With the aid of the 

OPA-G method, decision-makers can genuinely enjoy a high level of flexibility in dealing with various 

sustainable criteria and uncertainty. Moreover, the OPA-G method does not require data normalization, 

a pairwise comparison matrix, and aggregating experts' opinions. 

 

 

 

 

 

Table 6. Opinion of experts for the technologies against Social criteria 

Experts Rank 
Type 

T1 T2 T3 T4 T5 T6 T7 T8 T9 

E1 CR 3 1 2 1 2 2 1 2 1 

GR [2.5,3.5] [0.5,1.5] [1.5,2.5] [0.5,1.5] [1.5,2.5] [1.5,2.5] [0.5,1.5] [1.5,2.5] [0.5,1.5] 

E2 CR 1 4 5 3 4 3 2 2 3 

GR [0.5,1.5] [3.5,4.5] [4.5,5.5] [2.5,3.5] [3.5,4.5] [2.5,3.5] [1.5,2.5] [1.5,2.5] [2.5,3.5] 

E3 CR 2 3 4 2 3 1 4 4 5 

GR [1.5,2.5] [2.5,3.5] [3.5,4.5] [1.5,2.5] [2.5,3.5] [0.5,1.5] [3.5,4.5] [3.5,4.5] [4.5,5.5] 

E4 CR 2 3 1 2 4 1 2 or 3 2 5 

GR [1.5,2.5] [3.5,4.5] [0.5,1.5] [1.5,2.5] [3.5,4.5] [0.5,1.5] [1.5,3.5] [1.5,2.5] [4.5,5.5] 

E5 CR 2 3 1 4 3 5 3 2 3 

GR [1.5,2.5] [3.5,4.5] [0.5,1.5] [3.5,4.5] [3.5,4.5] [4.5,5.5] [3.5,4.5] [1.5,2.5] [3.5,4.5] 

E6 CR 1 2 1 1 2 3 1 2 1 

GR [0.5,1.5] [1.5,2.5] [0.5,1.5] [0.5,1.5] [1.5,2.5] [3.5,4.5] [0.5,1.5] [1.5,2.5] [0.5,1.5] 

E7 CR 5 8 4 6 2 1 9 3 7 

GR [4.5,5.5] [7.5,8.5] [3.5,4.5] [5.5,6.5] [1.5,2.5] [0.5,1.5] [8.5,9.5] [3.5,4.5] [6.5,7.5] 

E8 CR 5 3 4 4 3 2 1 3 4 

GR [4.5,5.5] [3.5,4.5] [3.5,4.5] [3.5,4.5] [3.5,4.5] [1.5,2.5] [0.5,1.5] [3.5,4.5] [3.5,4.5] 

E9 CR 4 2 3 4 2 5 5 4 2 

GR [3.5,4.5] [1.5,2.5] [3.5,4.5] [3.5,4.5] [1.5,2.5] [4.5,5.5] [4.5,5.5] [3.5,4.5] [1.5,2.5] 

E10 CR 3 4 4 5 5 3 1 3 5 

GR [3.5,4.5] [3.5,4.5] [3.5,4.5] [4.5,5.5] [4.5,5.5] [3.5,4.5] [0.5,1.5] [3.5,4.5] [4.5,5.5] 
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Table 8. Weights and ranking of criteria 

Criteria Lower limit Upper limit Average weights Rank 

Economy 0.2792 0.4557 0.3674 2 

Social 0.1820 0.2232 0.2026 3 

Environmental 0.3388 0.5211 0.4300 1 

 

5. Conclusion and recommendations 

Climate change is a global issue, and the agricultural sector is an integral part of it. Agriculture 

activities significantly influence the economy, society, and environment, which are the main indicator 

of sustainable development. Using low-carbon and sustainable agricultural technology can help mitigate 

the adverse effect on the environment and increase global food security. But selecting appropriate low-

carbon and sustainable agricultural technology for the agricultural industry becomes a big problem. 

There are many MCDM methods in literature to help decision-makers, but several methods are not 

equipped to deal with uncertainty in information. Thus, this study employed the Grey Ordinal Priority 

Approach (OPA-G), a modern multi-attribute decision-making technique that will help decision-makers 

select the best possible alternatives/technologies for the agricultural industry.  

To achieve sustainable development goals (SDGs), the contribution of the agriculture sector cannot be 

neglected. Implications of low-carbon and sustainable agricultural technology is an inevitable choice for 

government and policymakers in developed and developing countries. Despite the negative effects from the 

agriculture sector, it would be easier to mitigate climate change than any other sector. This study identified a 

number of well-known key low-carbon and sustainable agricultural technologies that have proven their 

usefulness for all agriculture activities in most countries and have the potential to be used. The implications 

of these technologies in the agriculture sector can help tackle global climate change and ensure global food 

security. 

Table 7. Opinion of experts for the technologies against Environmental criteria 

Experts Rank 
Type 

T1 T2 T3 T4 T5 T6 T7 T8 T9 

E1 CR 3 1 1 1 2 1 1 2 1 

GR [2.5,3.5] [0.5,1.5] [0.5,1.5] [0.5,1.5] [1.5,2.5] [0.5,1.5] [0.5,1.5] [1.5,2.5] [0.5,1.5] 

E2 CR 3 2 5 4 2 1 1 5 4 or 5 

GR [2.5,3.5] [1.5,2.5] [4.5,5.5] [3.5,4.5] [1.5,2.5] [0.5,1.5] [0.5,1.5] [4.5,5.5] [3.5,5.5] 

E3 CR 3 2 4 3 2 3 1 5 4 

GR [2.5,3.5] [1.5,2.5] [3.5,4.5] [2.5,3.5] [1.5,2.5] [2.5,3.5] [0.5,1.5] [4.5,5.5] [3.5,4.5] 

E4 CR 3 1 4 2 4 3 1 4 3 

GR [2.5,3.5] [0.5,1.5] [3.5,4.5] [1.5,2.5] [3.5,4.5] [2.5,3.5] [0.5,1.5] [3.5,4.5] [2.5,3.5] 

E5 CR 2 1 3 3 2 3 1 4 3 or 4 

GR [1.5,2.5] [0.5,1.5] [2.5,3.5] [2.5,3.5] [1.5,2.5] [2.5,3.5] [0.5,1.5] [3.5,4.5] [2.5,4.5] 

E6 CR 2 2 3 1 2 2 1 3 2 

GR [1.5,2.5] [1.5,2.5] [2.5,3.5] [0.5,1.5] [1.5,2.5] [1.5,2.5] [0.5,1.5] [2.5,3.5] [1.5,2.5] 

E7 CR 9 3 7 6 5 4 1 8 2 

GR [8.5,9.5] [2.5,3.5] [6.5,7.5] [5.5,6.5] [4.5,5.5] [3.5,4.5] [0.5,1.5] [7.5,8.5] [1.5,2.5] 

E8 CR 3 1 3 2 4 2 1 4 3 

GR [3.5,4.5] [0.5,1.5] [3.5,4.5] [1.5,2.5] [3.5,4.5] [1.5,2.5] [0.5,1.5] [3.5,4.5] [3.5,4.5] 

E9 CR 2 1 3 4 3 3 1 4 5 

GR [1.5,2.5] [0.5,1.5] [3.5,4.5] [3.5,4.5] [3.5,4.5] [3.5,4.5] [0.5,1.5] [3.5,4.5] [4.5,5.5] 

E10 CR 4 1 5 4 3 3 1 3 2 

GR [3.5,4.5] [0.5,1.5] [4.5,5.5] [3.5,4.5] [3.5,4.5] [3.5,4.5] [0.5,1.5] [3.5,4.5] [1.5,2.5] 



International Journal of Grey Systems: Vol. 1, No. 1 Shajedul (2021)  

21 

 

 

Although the theory of the OPA-G model seems superior in many aspects when compared with the 

classical MCDM theories, it can further be improved. Identifying qualified experts for the data collection 

of different alternatives based on a sustainable approach has brought more research questions for this 

model. Experts' opinions are crucial for the decision-making process; experts' unfair or biased judgment 

can affect the final results. A standardized objective methodology to prioritize experts is needed. The 

development of a tool to predict the level of reliability can improve its effectiveness. The model should 

be applied to solve diverse problems to better understand its limitations and strengths in the future. 
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